## Operating Instructions

for

## Compact Vortex Flow Meter

## Model: DVZ



## 1. Contents

1. Contents ..... 2
2. Note ..... 3
3. Instrument Inspection ..... 3
4. Regulation Use ..... 3
5. Operating Principle ..... 4
6. Mechanical Connection ..... 4
6.1 Check operating conditions: ..... 4
6.2 Installation ..... 4
7. Electrical Connection ..... 5
7.1 General ..... 5
7.2 DVZ-...S300 ..... 6
7.3 DVZ-...S30D ..... 6
7.4 DVZ-...F300; DVZ-...L3x3 ..... 6
7.5 DVZ-...L443 ..... 7
7.6 DVZ-...C30 ..... 7
7.7 DVZ-...C34 ..... 7
7.8 DVZ-...Ex4R, DVZ-...Gx4R ..... 8
8. Operation ..... 9
8.1 Switch point setting DVZ-...S300, DVZ-...S30D ..... 9
8.2 Counter electronics DVZ-...Ex4R ..... 9
8.3 Dosing electronics DVZ-...Gx4R ..... 9
9. Adjustments - Compact Electronic DVZ-...C3. ..... 10
9.1 Button function ..... 10
9.2 Settings ..... 10
9.3 Value setting ..... 11
9.4 Set-up mode ..... 12
9.5 Main menu items ..... 14
10. Maintenance ..... 16
11. Technical Information ..... 17
12. Order Codes ..... 20
13. Dimensions ..... 22
13.1 Dimensions - Sensor ..... 22
13.2 Dimensions - Electronics ..... 28
14. EU Declaration of Conformity ..... 31

## Manufactured and sold by:

Kobold Messring GmbH

Nordring 22-24
D-65719 Hofheim
Tel.: +49(0)6192-2990
Fax: +49(0)6192-23398
E-Mail: info.de@kobold.com
Internet: www.kobold.com

## 2. Note

Please read these operating instructions before unpacking and putting the unit into operation. Follow the instructions precisely as described herein.
The devices are only to be used, maintained and serviced by persons familiar with these operating instructions and in accordance with local regulations applying to Health \& Safety and prevention of accidents.

When used in machines, the measuring unit should be used only when the machines fulfil the EC-machine guidelines.

## as per PED 2014/68/EU

In acc. with Article 4, Paragraph (3), "Sound Engineering Practice", of the PED 2014/68/EU no CE mark.
Diagram 8, Pipelines, Group 1, dangerous fluids

## 3. Instrument Inspection

Instruments are inspected before shipping and sent out in perfect condition.
Should damage to a device be visible, we recommend a thorough inspection of the delivery packaging. In case of damage, please inform your parcel service / forwarding agent immediately, since they are responsible for damages during transit.

## Scope of delivery:

The standard delivery includes:

- Compact Vortex Flow Meter model: DVZ
- Operating Instructions


## 4. Regulation Use

Any use of the Compact Vortex flow meter, model: DVZ, which exceeds the manufacturer's specifications, may invalidate its warranty. Therefore, any resulting damage is not the responsibility of the manufacturer. The user assumes all risk for such usage.

## 5. Operating Principle

The compact KOBOLD Vortex flow meter, model DVZ, is used for measuring and monitoring smaller and medium-sized flow of low viscosity, water-like fluids in pipes.
The device works using the vortex process, making it virtually maintenance-free. This involves the installation of a sharp-edged object (the vortex generator) in the flow duct. A vortex is created behind the object whose frequency is proportional to the flow velocity of the fluid.
The flow volume can be determined with a very great degree of accuracy by measuring the vortex frequency. This achieves a very high linearity across the whole measuring range.
The device can be fitted with switching, frequency or analogue outputs. There is also an optional compact electronics package that includes a digital display, and both a switching and analogue output.

## 6. Mechanical Connection

### 6.1 Check operating conditions:

- Flow rate
- max. operating pressure
- max. operating temperature


### 6.2 Installation

- Remove all packing materials and transport retainers and ensure that no such materials remain in the device.
- Install with flow in direction of arrow (universal mounting)
- Avoid pressure and radial tension
- Fasten the pipe at up stream and down stream at a distance of 50 mm from the connections

Attention! Retransfer the unit on
 the metal bolting (not on the plastic housing!) Mount switches using the proper tightening

torque according the following table!

| Nominal size of <br> threads | Proper tightening torque |
| :---: | :---: |
| $3 / 8^{\prime \prime}$ | 22 bis 24 Nm |
| $1 / 2^{\prime \prime}$ | 28 bis 30 Nm |
| $3 / 4 "$ | 28 bis 30 Nm |
| $1 "$ | 36 bis 38 Nm |

$\left\{\begin{array}{l}\text { Note! The switch may be damaged if it is tightened above the } \\ \text { tightening torque range. Also, if it is tightened below the tightening } \\ \text { torque range, the connecting thread section may loosen. }\end{array}\right.$

- Ensure inlet section of $10 x D N$ and outlet section of $10 x$ DN
- Avoid valves or large reduction on the inlet section (this increases the inaccuracy of measurements)
- Check the seals of the connections



## 7. Electrical Connection

### 7.1 General



- Make sure that the supply wires are de-energised.
- Connect the supply voltage and the output signal to the plug PIN's as stated below.
- We recommend the use of wires with cross sectional area of min. $0,25 \mathrm{~mm}^{2}$.


### 7.2 DVZ-...S300



### 7.3 DVZ-...S30D



### 7.4 DVZ-...F300; DVZ-...L3x3



### 7.5 DVZ-...L443



### 7.6 DVZ-...C30



### 7.7 DVZ-...C34



### 7.8 DVZ-...Ex4R, DVZ-...Gx4R

Cable connection

| Wire number | DVZ-...E14R <br> Counter electronics | DVZ-..G14R <br> Dosing electronics |
| :---: | :--- | :--- |
| 1 | $+24 \mathrm{~V}_{\mathrm{DC}}$ | +24 V $_{\text {DC }}$ |
| 2 | GND | GND |
| 3 | $4-20 \mathrm{~mA}$ | $4-20 \mathrm{~mA}$ |
| 4 | GND | GND |
| 5 | n. c. | control 2* |
| 6 | reset part quantity | control 1 |
| 7 | relay S1 | relay S1 <br> normally open |
| 8 | normally open | relay S2 <br> normally open |
| 9 | relay S2 |  |
| 10 | normally open |  |

*Start-dosing: Control 1 connect with GND
Stop-dosing: Control 2 connect with GND
Reset-dosing: Control 1 and Control 2 at the same time with GND


Plug connection
-E34 R

$30 \mathrm{~V}_{\text {AC/DC }} / 2 \mathrm{~A}$

-G34 R

$30 \mathrm{~V}_{\mathrm{AC} / \mathrm{DC}} / 2 \mathrm{~A}$

d.c.*) Don't connect!

## 8. Operation

The units are preset and after electrical connection ready for operation.

### 8.1 Switch point setting DVZ-...S300, DVZ-...S30D

| Switch setting | Switch point |
| :---: | :---: |
| 0 | switch function deactivated |
| 1 | start of measuring range |
| 2 | $20 \%$ of f.s. |
| 3 | $30 \%$ of f.s. |
| 4 | $40 \%$ of f.s. |
| 5 | $50 \%$ of f.s. |
| 6 | $60 \%$ of f.s. |
| 7 | $70 \%$ of f.s. |
| 8 | $80 \%$ of f.s. |
| 9 | $90 \%$ of f.s. |

Flow above switch point: DUO-LED green
Flow below switch point: DUO-LED red
Measuring range overflow: DUO-LED orange flashing

### 8.2 Counter electronics DVZ-...Ex4R

Operating please see Operating Instructions ZED-Z

### 8.3 Dosing electronics DVZ-...Gx4R

Operating please see Operating Instructions ZED-D

## 9. Adjustments - Compact Electronic DVZ-...C3..

Connect the compact electronic according to previous connection diagram. After power on, the measuring range (end current) will be shown for 3 seconds.

### 9.1 Button function

In the normal mode (measuring mode)
: Press 3 sec. $\rightarrow$ Setup mode
S: Switch point/Window point

In the set-up mode


### 9.2 Settings

The following values can be changed in the compact electronics:

|  | Scale range | Factory setting |
| :--- | :--- | :--- |
| Switch point (SPo, SP1, SP2) | $0 \ldots . .999$ | 0,00 |
| Hysteresis (HYS) | $-199 \ldots 0$ | $-0,00$ |
| Window point (duo point) (duo) | Switch point. .999 | --- (inactive) |
| contact-type (Con, Co1, Co2) | N/O, N/C or Frequency (Fr)** | N/O |
| Start current (S-C)* | $000 \ldots 999$ | 000 |
| End current (E-C) | $000 \ldots 999$ | f.s. |
| Start current selection (SCS) | $0--(0 \mathrm{~mA}), 4--(4 \mathrm{~mA})$ | 4 mA |
| Change Code (CCo) | $000 \ldots 999$ | 000 |

[^0]
### 9.3 Value setting

From the main menu item (for example: switch point, "SPo"), press the " " button to set the value. The flow chart below illustrates the universal routine for changing individual parameters.
[From the main menu item]


1. Adjust position
2. Adjust position
3. Adjust position

Adjust decimal point

Save selected value
or enter new value.
[To the next main menu item]

### 9.4 Set-up mode

Compact electronic DVZ-...C30..


Compact electronic DVZ-...C34



### 9.5 Main menu items

### 9.5.1 Switching point

The switching point is entered in the menu item "Spo, SP1, SP2". A setting value between 000 and 999 can be selected. This value can also include a decimal point. The decimal point can be set at two points (e.g. 10.0 or 1.00 ). If the display value exceeds the set switch point, the electronic is activated and is signalised by a lightning LED.
If the hysteresis is equal to zero and the window point is de-activated, the electronic switches back whenever the indicated value falls below the switching point.

### 9.5.2 Hysteresis

After the setting of the switching point, the hysteresis can be entered as a negative value in the "HYS" menu. The standard hysteresis value is zero. In operation condition this can lead to ambiguous switching behaviour, if the reading fluctuates around the switching point or window point. In this case, increasing the hysteresis can put things right. The hysteresis relates to the switching point and the window point (switching point minus hysteresis; window point plus hysteresis).

Example: Switching point $100 \mathrm{I} / \mathrm{min}$; Hysteresis: $-2.5 \mathrm{I} / \mathrm{min}$
The electronic switches when $100 \mathrm{l} / \mathrm{min}$ is exceeded and switches back when the reading drops below $97.5 \mathrm{l} / \mathrm{min}$.

### 9.5.3 Window point (duo-point)

As well as the switching point, it is also to define a "duo" (duo-point), the window point. This must be higher than the switching point. By using the window point and the switching point it is possible to monitor the measurement value in a certain range. The switching point limits the measurement range to smaller values and the window point to larger values.

If the window point (duo-point) is less than or equal to the switching point, an error report (Er4) will be indicated on the display and its value is deleted and its function is invalid (in the case that the window point and switching point out of adjustment).

The value is set in the same way as the switching point.
The window point is needed for process, in which monitoring of a certain temperature range is necessary.

Example: Switching point: $100 \mathrm{~L} / \mathrm{min} ;$ window point: $150 \mathrm{~L} / \mathrm{min}$; hysteresis: -1 L/min
The electronic switches when $100 \mathrm{l} / \mathrm{min}$ is exceeded. If the switching value remains between $99 \mathrm{~L} / \mathrm{min}(100-1)$ and $151 \mathrm{~L} / \mathrm{min}(150+1)$, the contact will also remain in active switching condition (LED on). If it exceeds $151 \mathrm{I} / \mathrm{min}$ or is below $99 \mathrm{I} / \mathrm{min}$ the electronic switches back.

## Switching behaviour

The following diagram clarifies the switching behaviour of the electronic switch. The contact closes (contact type: no) when it drops below the switching point or the window point. It only opens again if the window point plus hysteresis is exceeded or if it drops below the switching point minus hysteresis. An LED indicates the switching condition of the switching point.



### 9.5.4 Contact type

The function of the transistor switching output is set in menu item "Con, Co1 or Co2". The switching function switches from

$$
\begin{aligned}
& \text { no }- \text { N/O contact to } \\
& \text { nc }- \text { N/C to } \\
& \text { Fr - frequency } \quad \text { (only Con and Co1) } \\
& \text { and back. }
\end{aligned}
$$

N/O contact: contact closes when switching point is exceeded N/C contact: contact opens when switching point is exceeded Frequency: frequency output synchronised with the vane frequency

### 9.5.5 Current output

The current output is selected in menu items
"S-C" Start current indicated value $<>0(4) \mathrm{mA}$
"E-C" End current indicated value < > 20 mA
"SCS" Start current selection (0-20 mA or 4-20 mA).
The indicated value at which $0(4) \mathrm{mA}$ flow is entered in menu item Start current. The indicated value at which 20 mA flow is entered in menu item End current.

### 9.5.6 Change Code

The change code option "CCo" secures the unit against unauthorised tampering. If the code is different from 000, the user must input the code immediately after entering the adjustment mode.

## 10. Maintenance

The measurement device requires no maintenance if the measurement medium does not cause deposits or include fibre parts, which wrap around the sensor or the gate. In order to avoid problems, we recommend the installation of a filter, such as the magnetic filter, type MFR.
If it is necessary to clean the sensor, the sensor can be rinsed with a suitable liquid. Fiber parts or large particles can be carefully removed with tweezers, etc.


Work on the electronics can only be performed by the factory, or the warranty is otherwise voided.

## 11. Technical Information

Measurement process:
Mounting position:
Response time:
Accuracy:
Repeat accuracy:
Inlet / outlet runs:
Protection:
Media temperature:
Ambient temperature:

Vortex principle any, flow in direction of arrow
1 s (at flow changes $>10 \%$ f.s.)
$\pm 2.5 \%$ of f.s.
$\pm 1 \%$ of f.s.
10xDN
IP 65
$0 . . .80^{\circ} \mathrm{C}$
$-10 . . .+60^{\circ} \mathrm{C}$

Max. Pressure

| Connection | fixed | rotatable |
| :--- | :---: | :---: |
| Standard version | 10 bar | 20 bar |
| Reinforced version | 20 bar | - |

Pressure loss

| Model | Upper range value | Pressure loss |
| :---: | :---: | :---: |
| DVZ-**04 | $4,5 \mathrm{~L} / \mathrm{min}$ | 420 mbar |
| DVZ-**07 | $6,5 \mathrm{~L} / \mathrm{min}$ | 650 mbar |
| DVZ-**10 | $10,0 \mathrm{~L} / \mathrm{min}$ | 780 mbar |
| DVZ-**16 | $16,0 \mathrm{~L} / \mathrm{min}$ | 600 mbar |
| DVZ-**22 | $22,0 \mathrm{~L} / \mathrm{min}$ | 450 mbar |
| DVZ-**32 | $32,0 \mathrm{~L} / \mathrm{min}$ | 370 mbar |
| DVZ-**40 | $40,0 \mathrm{~L} / \mathrm{min}$ | 450 mbar |
| DVZ-**50 | $50,0 \mathrm{~L} / \mathrm{min}$ | 400 mbar |
| DVZ-**63 | $63,0 \mathrm{~L} / \mathrm{min}$ | 380 mbar |
| DVZ-** 80 | $80,0 \mathrm{~L} / \mathrm{min}$ | 400 mbar |
| DVZ--** 99 | $100,0 \mathrm{~L} / \mathrm{min}$ | 350 mbar |

## Weight - Sensor

| Measuring range | Size | Connection fixed | Connection <br> strengthened | Connection <br> rotatable |
| :--- | :---: | :---: | :---: | :---: |
| bis $32 \mathrm{~L} / \mathrm{min}$ | $1 / 4 ", 3 / 8 ", 1 / 2^{\prime \prime}$ | approx. 450 g | approx. 600 g | approx. 800 g |
| bis $32 \mathrm{~L} / \mathrm{min}$ | $3 / 4 "$ | approx. 600 g | approx. 600 g | approx. 900 g |
| bis $32 \mathrm{~L} / \mathrm{min}$ | $1 "$ | approx. 1050 g | approx. 950 g | approx. 950 g |
| $40 . .100 \mathrm{~L} / \mathrm{min}$ | $3 / 4 "$ | approx. 1050 g | approx. 1300 g | approx. 1350 g |
| $40 . .100 \mathrm{~L} / \mathrm{min}$ | $1 "$ | approx. 900 g | approx. 1150 g | approx. 1400 g |

## Weight - Electronics

| Model | Weight |
| :--- | :---: |
| DVZ-...F3x0 |  |
| DVZ-...S30x | approx. 80 g |
| DVZ-...Lxx3 |  |
| DVZ-...C3xx | approx. 300 g |
| DVZ-...Exxx | approx. 250 g |
| DVZ-...Gxxx |  |

Total weight $=$ weight sensor + weight electronics

## Wetted parts

Sensor housing:
Sensor:
Connections:

Bluff body:
Seal:
DVZ-...S300, DVZ-...S30D
Display:
Switching output:
Switch point:

Power supply:
Power consumption:
Electrical connection:
Measuring range overflow:

DVZ-...F300, DVZ-...F390
Impulse output:
Frequency at f.s.
Power supply:
Power consumption:
Electrical connection:
Measuring range overflow:
DVZ-...L303; DVZ-...L343
Output:
Max. load:
Power supply:
Electrical connection:
Measuring range overflow:

PPS, fibreglass-reinforced
PVDF
brass (from $32 \mathrm{~L} / \mathrm{min}$ nickel plated
from $40 \mathrm{~L} / \mathrm{min}$ blank) or
stainless steel 1.4404
PPS, fibreglass-reinforced or oxide ceramic (non-wear version)
NBR, EPDM or FPM
duo-LED for switching condition and when range limit is exceeded relay changeover, max. $1 \mathrm{~A} / 30 \mathrm{~V}$ DC or active $24 \mathrm{~V}_{\mathrm{DC}}$, N/C / N/O
measuring range beginning from $90 \%$ f.s. in $10 \%$-steps
can be configured by the customer using a rotary switch
$24 V_{D C} \pm 20 \%$
25 mA
plug M12x1.5 pole
flash of the DUO-LED (red/green)
from $105 \%$ of f.s.

PNP, Open Collector, max. 200 mA
500 Hz (...F300)
$50 . . .1000 \mathrm{~Hz}$ (F390)
$24 V_{D C} \pm 20 \%$
5 mA
plug M12x1
Fout approx. 2 kHz from $105 \%$ of f.s.

0(4)-20 mA, 3-wire
$500 \Omega$
$24 \mathrm{~V}_{\mathrm{DC}} \pm 20 \%$
plug M12x1
$I_{\text {out }}$ approx. $20,5 \mathrm{~mA}$ from $103 \%$ of f.s.

## DVZ-...L443 (usage with AUF-3000)

Output:
Max. load:
Power supply:
Electrical connection:
Measuring range overflow:

4-20 mA, 3-wire
$500 \Omega$
$24 \mathrm{~V} \mathrm{D} \pm 20 \%$
plug DIN 43650
$I_{\text {out }}$ approx. $20,5 \mathrm{~mA}$ from $103 \%$ of f.s.

## DVZ-...C3 (Compact electronics)*

Display:
Analogue output:
Switching output:
Contact function:

Programming:
Power supply:
Power consumption:
Electrical connection:
Measuring range overflow:

3-digit LED
(0) $4 . . .20 \mathrm{~mA}$ adjustable, max. $500 \Omega$ (only DVZ-...C34*)
1 or 2 Open Collector PNP or NPN, set at factory, max. 300 mA
N/C, N/O, frequency, programmable (frequency output not calibrated, frequency at f.s. approx. $500-600 \mathrm{~Hz}$ )
with 2 keys
$24 \mathrm{~V}_{\mathrm{dc}} \pm 20 \%$, 3-wire
approx. 100 mA
plug M12x1
display "OF" from 105\% of f.s.

## DVZ-...Exxx (Counter electronics)*

Display:

Quantity meter:
Analogue output:
Load:
Switching output:
Settings:
Functions:

Power supply:
Power consumption:
LCD, $2 \times 8$ digit, illuminated total, part and flow quantities, units selectable 8-digit
(0)4... 20 mA adjustable max. $500 \Omega$ 2 relays, max. $30 \mathrm{~V}_{\mathrm{AC} / \mathrm{DC}} / 2 \mathrm{~A} / 60 \mathrm{VA}$ via 4 buttons reset, MIN/MAX memory, flow monitor, monitoring for part and total quantity, language $24 \mathrm{~V}_{\mathrm{DC}} \pm 20 \%$, 3-wire

Electrical connection:
approx. 150 mA cable connection or M12-plug

## DVZ-...Gxxx (Dosing electronics)*

Display:

Quantity meter:
Dosage:
Analogue output:
Load:
Switching output:
Settings:
Functions:

Power supply:
Power consumption:
Electrical connection:

LCD, $2 \times 8$ digit, illuminated, dosing, total and flow quantity, units selectable
8-digit
5-digit
(0)4... 20 mA adjustable max. $500 \Omega$
2 relays, max. $30 \mathrm{~V}_{\mathrm{AC} / \mathrm{DC}} / 2 \mathrm{~A} / 60 \mathrm{VA}$ via 4 buttons
dosing (relay S2), start, stop, reset, fine dosing, correction amount, flow switch, total quantity, language 24 VDC $\pm 20$ \%, 3-wire approx. 150 mA cable connection or M12-plug

## 12. Order Codes

Fixed connection
Order details (Example: DVZ-1 104 G2 S300)

*Reinforced version only in combination with fixed connection
**Please specify flow direction in the order

## Axial rotatable connection


*Please specify flow direction in the order

## 13. Dimensions

### 13.1 Dimensions - Sensor

DVZ-sensor with fixed connection, measuring range up to $32 \mathrm{~L} / \mathrm{min}$



| Meas. <br> range | $. .04 / . .07 / . .10$ | $. .04 / . .07 /$ <br> $. .10 / .16$ | $.04 / . .07 / . .10 /$ <br> $. .16 / .22 / .32$ | $. .16 / . .22 / . .32$ | $. .22 / . .32$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D 1 | $1 / 4 "$ | $3 / 8^{\prime \prime}$ | $1 / 2$ " | $3 / 4 "$ | $1 "$ |
| AF | 35 | 35 | 35 | 34 | -- |
| L 1 | 100 | 100 | 106 | 120 | 128 |
| L 2 | -- | -- | -- | 50 | 50 |
| L 3 | 35 | 35 | 35 | 34 | -- |
| L 4 | -- | -- | -- | -- | 46 |

DVZ-sensor with fixed connection, measuring range from $40 \mathrm{~L} / \mathrm{min}$


DVZ-sensor with strengthened connection, measuring range up to $32 \mathrm{~L} / \mathrm{min}$



| Meas. <br> range | $. .04 / . .07 / . .10$ | $. .04 / . .07 /$ <br> ..10/.16 | $. .04 / . .07 / . .10 /$ <br> $. .16 / .22 / . .32$ | $. .16 / . .22 / . .32$ | $. .22 / . .32$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D 1 | $1 / 4$ " | $3 / 8^{\prime \prime}$ | $1 / 2^{\prime \prime}$ | $3 / 4$ " | $1 "$ |
| AF | 34 | 34 | 34 | 34 | -- |
| L 1 | 100 | 100 | 106 | 120 | 128 |
| L 4 | 34 | 34 | 34 | 34 | 46 |

DVZ-sensor with strengthened connection, measuring range from $40 \mathrm{~L} / \mathrm{min}$


DVZ-Sensor with rotatable connection, measuring range up to $32 \mathrm{~L} / \mathrm{min}$


| Meas. range | $\begin{gathered} . .04 / . .07 / \\ . .10 \end{gathered}$ | $\begin{aligned} & . .04 / . .07 / \\ & . .10 / . .16 \end{aligned}$ | $\begin{aligned} & . .04 / . .07 / \\ & . .10 / .16 / \\ & . .22 / . .32 \end{aligned}$ | $\begin{gathered} . .16 / . .22 / \\ . .32 \end{gathered}$ | ..22/.. 32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D 1 | 1/4" | 3/8" | 1/2" | 3/4" | $1{ }^{\prime \prime}$ |
| D 2 | 24 | 28 | 35 | 40 | 45 |
| AF | 19 | 24 | 30 | 36 | 41 |

DVZ-Sensor with rotatable connection, measuring range from $40 \mathrm{~L} / \mathrm{min}$


| Meas. | $.40 / .50 /$ <br> range | $.40 / .50 / .80 /$ <br> . .99 |
| :---: | :---: | :---: |
| D 1 | $3 / 4 "$ | $. .60 / .80 /$ |
| D 2 | 40 | $1 "$ |
| AF | 36 | 45 |

### 13.2 Dimensions - Electronics

DVZ-...S30x, DVZ-...F3x0, DVZ-...L3x3


DVZ-...L443


## DVZ-...C3xx



DVZ-...Exxx, DVZ-...Gxxx


## 14. EU Declaration of Conformity

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

## Compact Vortex Flow Meter Model: DVZ

to which this declaration relates is in conformity with the standards noted below:

## EN 61326-1:2013

Electrical equipment for control and instrumentation technology and laboratory use - EMC-requirements Part 1: General requirements

EN 61010-1:2011
Safety requirements for electrical measuring-, control- and laboratory instruments
EN 60529:2014
Degrees of protection provided by enclosures (IP Code)

Also the following EEC guidelines are fulfilled:
$\begin{array}{ll}\text { 2014/30/EU } & \text { EMC Directive } \\ \text { 2011/65/EU } & \text { RoHS }\end{array}$

H. Peters

General Manager
M. Wenzel

Proxy Holder


[^0]:    * Start- and end value of flow relating to 0/4-20 mA.
    ** not calibrated, frequency at f.s. approx. $500-600 \mathrm{~Hz}$

