# PROVU PD6100 Strain Gauge, Load Cell & mV Meter Instruction Manual









## Strain Gauge

- 15, 30, 150, 300 mV Unipolar Input Ranges
- ±15, ±25, ±150, ±250 mV Bipolar Input Ranges
- Selectable 5 or 10 VDC @ 350 mA Maximum Sensor Excitation
- Supports up to Twelve (12) 350 Ω Load Cells
- Capture or Programmable Tare Feature
- Auto-Zero Feature Eliminates Zero Drift
- Ratiometric Operation
- Max/Min or Peak/Valley Hold Feature
- Display One Input in Two Different Scales (e.g. Weight & Volume)
- Rounding Function 1, 2, 5, 10, 20, 50, or 100
- Dual-Line Display
- NEMA 4X and IP65 Rated Front Panel
- UL Listed & CE Marked
- Display Features 0.6" & 0.46" Digits
- Six Full Digits on Each Line
- Optional Superluminous Sunlight Readable Display
- Free USB Programming Software & Cable
- 2 or 4 Relays + Isolated 4-20 mA Output Options
- USB, RS-232, & RS-485 Serial Communication Options
- External 4-Relay & Digital I/O Expansion Modules
- Input Power Options Include 85-265 VAC or 12-24 VDC
- Modbus® RTU Communication Protocol Standard

#### Order from:

# **C** A Briggs Company

622 Mary Street; Suite 101 Warminster, PA 18974 Phone: 267-673-8117 - Fax: 267-673-8118 Sales@cabriggs.com - www.cabriggs.com



## **Disclaimer**

The information contained in this document is subject to change without notice. Precision Digital makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for a particular purpose.



**CAUTION**: Read complete instructions prior to installation and operation of the meter.



WARNING: Risk of electric shock or personal injury.



This product not recommended for life support applications or applications where malfunctioning could result in personal injury or property loss. Anyone using this product for such applications does so at his/her own risk. Precision Digital Corporation shall not be held liable for damages resulting from such improper use.

## **Limited Warranty**

Precision Digital Corporation warrants this product against defects in material or workmanship for the specified period under "Specifications" from the date of shipment from the factory. Precision Digital's liability under this limited warranty shall not exceed the purchase value, repair, or replacement of the defective unit.

## **Registered Trademarks**

PROVU® and MeterView® Pro are registered trademarks of Precision Digital Corporation. Modbus® is a Registered Trademark of Schneider Automation Inc. All other trademarks mentioned in this document are the property of their respective owners.

© 2017 Precision Digital Corporation. All rights reserved.

www.predig.com

# **Table of Contents**

| Table of Contents                                                 | 3                 |
|-------------------------------------------------------------------|-------------------|
| Table of Figures                                                  | 4                 |
| Introduction                                                      |                   |
| Ordering Information                                              |                   |
| Specifications                                                    |                   |
| General                                                           |                   |
| Strain Gauge Input                                                |                   |
| Relays                                                            | 7                 |
| Isolated 4-20 mA Transmitter Output                               | ,                 |
| Modbus® RTU Serial Communications                                 | o                 |
| MeterView Pro                                                     | o                 |
| Compliance Information                                            | o                 |
| Safety                                                            |                   |
| Electromagnetic Compatibility                                     | o                 |
| Safety Information                                                |                   |
| Installation                                                      |                   |
|                                                                   |                   |
| Unpacking                                                         |                   |
| Panel Mounting Instructions                                       |                   |
| Mounting DimensionsSensor Excitation Voltage Selection (EX+, EX-) | . 11              |
| Connections                                                       |                   |
| Connectors Labeling                                               |                   |
| Power Connections                                                 |                   |
| Signal Connections                                                |                   |
| Switch Configuration                                              | . 13              |
| Shunt Calibration                                                 |                   |
| Modbus RTU Serial Communications                                  | 16                |
| Relay Connections                                                 |                   |
| Switching Inductive Loads                                         |                   |
| 4-20 mA Output Connections                                        | 17                |
| Analog Output Power Supply                                        |                   |
| F4 Digital Input Connections                                      | 17                |
| External Relays & Digital I/O Connections                         | . 18              |
| Interlock Relay Feature                                           |                   |
| Setup and Programming                                             | 19                |
| Front Panel Buttons and Status LED Indicators                     | 19                |
| MeterView® Pro Software                                           |                   |
| MeterView Pro Installation                                        |                   |
| Display Functions & Messages                                      |                   |
| Setting Numeric Values                                            | . 23              |
| Main Menu                                                         | . 23              |
| Setting Up the Meter (5EŁuP)                                      | . 24              |
| Setting the Input Signal ( ໂດPມt)                                 | . 25              |
| Setting the Input Units ( 🚧 ،Ł5)                                  | . 26              |
| Setting the Input Units or Custom Tags (שחי וב 5)                 | . 27              |
| Programming the Meter (PraL)                                      |                   |
| Calibrating the Meter with Strain Gauge/Load Ce                   |                   |
| ( <i>ERL</i> )                                                    |                   |
| Setting the Display Parameter & Intensity (d5PLR                  | ' <del>'</del> 5) |
|                                                                   | . 30              |
| Setting the Relay Operation (rELRY)                               |                   |
| Setting the Relay Action                                          |                   |
| Programming Set and Reset Points                                  |                   |
| Setting Fail-Safe Operation                                       |                   |
| Programming Time Delay                                            |                   |
| Relay and Alarm Operation Diagrams                                | . 33              |

| High Alarm Operation (Set > Reset)                | 33  |
|---------------------------------------------------|-----|
| Low Alarm Operation (Set < Reset)                 |     |
| High Alarm with Fail-Safe Operation (Set > Reset) |     |
| Low Alarm with Fail-Safe Operation (Set < Reset)  | 34  |
| Pump Alternation Control Operation                |     |
| Relay Sampling Operation                          | 25  |
|                                                   |     |
| Time Delay Operation                              |     |
| Relay Operation Details                           |     |
| Overview                                          |     |
| Relays Auto Initialization                        |     |
| Fail-Safe Operation                               |     |
| Front Panel LEDs                                  | 36  |
| Latching and Non-Latching Relay Operation         | 37  |
| Non-Latching Relay (Ք⊔Łⅅ)                         | 37  |
| Non-Latching Relay (R-n-Rn)                       | 37  |
| Latching Relay (ŁĂŁċH)                            |     |
| Latching Relay (¿Ł -[Ĺr)                          |     |
| Acknowledging Relays                              |     |
| Pump Alternation Control Applications (ALEErn)    | 38  |
| Setting Up the Interlock Relay (Force On) Feature |     |
| Scaling the 4-20 mA Analog Output (Paul)          |     |
| Setting Up the Password (PR55)                    | 11  |
| Protecting or Locking the Meter                   | 41  |
| Making Changes to a Receiverd Bretacted Mater     | 41  |
| Making Changes to a Password Protected Meter      | 41  |
| Disabling Password Protection                     | 41  |
| Reset Menu (FESEL)                                |     |
| Tare Menu (ŁЯ-E)                                  | 42  |
| Tare Functionality (ŁŖrE)                         |     |
| Control Menu (Eantrl)                             | 42  |
| Advanced Features Menu                            |     |
| Advanced Features Menu & Display Messages         |     |
| Noise Filter (F ،LEEr)                            | 44  |
| Noise Filter Bypass ( <i>๒ษฅรร</i> )              | 44  |
| Rounding Feature (คอบคฮ)                          | 44  |
| Modbus RTU Serial Communications (5Er 1RL)        | 45  |
| Select Menu (5ELEct)                              | 45  |
| Signal Input Conditioning (Functo)                | 45  |
| Auto-Zero (Auta D)                                | 46  |
| Low Cutoff ([utoff])                              | 46  |
| Analog Output Programming (คือปะคิรา)             |     |
| Programmable Function Keys User Menu ("55")       |     |
| Internal Source Calibration ( "ERL)               |     |
| Error Message (Error)                             |     |
|                                                   |     |
| Meter Operation                                   | 50  |
| Front Panel Buttons Operation                     | .50 |
| Function Keys Operation                           |     |
| Maximum/Minimum Readings                          |     |
| Troubleshooting                                   |     |
| Diagnostics Menu (ฮ เห็น์)                        |     |
| Determining Software Version                      | 52  |
| Reset Meter to Factory Defaults                   | 52  |
| Factory Defaults & User Settings                  | 53  |
| Troubleshooting Tips (Including FAULT & ERROR     |     |
| Messages)                                         | 54  |
| EU Declaration of Conformity                      | 55  |
| Lo Domaration of Combinity                        | 55  |

## **Table of Figures**

| Figure 1. 1/8 DIN Panel Cutout Dimensions 10         | Figure 12. mV Transducer Input Connections15       |
|------------------------------------------------------|----------------------------------------------------|
| Figure 2. Panel Mounting Details 10                  | Figure 13. Shunt Resistor15                        |
| Figure 3. Meter Dimensions - Side View 11            | Figure 14. Relay Connections16                     |
| Figure 4. Meter Dimensions - Top View                | •                                                  |
| Figure 5. Sensor Excitation Voltage Selection 11     | Figure 16. Low Voltage DC Loads Protection16       |
| Figure 6. Connector Labeling for Fully Loaded        | Figure 17. 4-20 mA Output Connections17            |
| PD6100 12                                            | Figure 18. F4 Digital Input Connections17          |
| Figure 7. Power Connections 12                       | Figure 19. Expansion Modules & DIN Rail Mounting   |
| Figure 8. Strain Gauge Configuration Switch 13       | Kit18                                              |
| Figure 9. Strain Gauge Powered by Internal Supply 14 | Figure 20. External Relays Module Connections18    |
| Figure 10. Strain Gauge Powered by External Supply   | Figure 21. Digital I/O Module Connections18        |
| 14                                                   | Figure 22. Interlock Connections18                 |
| Figure 11. Multiple Strain Gauges Connected          | Figure 23. Acknowledge Relays with Digital Input38 |
| Through Junction Box 15                              |                                                    |

## Introduction

The PROVU® PD6100 is a multipurpose, easy-to-use digital strain gauge & load cell meter ideal for weighing and force measurement applications. Its superluminous LED digits make it easily readable in smoke, dust, fog, and, with the optional SunBright® display, even direct sunlight.

It accepts mV input signals up to 300 mV. With a max current of 350 mA at 10 V, it can support up to twelve (12) 350  $\Omega$  load cells (minimum load resistance of 28  $\Omega$ ), making it ideal for multipoint weight measurement applications. The mV input can be scaled to display the process in two different scales; for example, pounds on display line 1 and gallons on line 2. Three of the front panel buttons can be custom-programmed for a specific operation.

The basic model includes an isolated 5 or 10VDC Sensor power supply that can be used to power the input Sensor or 24 VDC for other devices. An additional isolated 24 VDC power supply is included with the 4-20 mA output option. A digital input (F4) and micro USB port are standard on the meter.

A fully loaded PD6100 meter has the following: four SPDT relays, 4-20 mA output, one 10 VDC sensor excitation, and one 24 VDC power supply. The PD6100 capabilities may be enhanced by adding the following external expansion modules: four SPST relays –creating an eight-relay process meter, two digital I/O modules with four inputs and four outputs each, and RS-232 or RS-485 communication adapters.

The eight relays can be used for alarm indication or process control such as pump alternation control. The 4-20 mA isolated output, Modbus RTU serial communications, and digital I/O options make the PD6100 an excellent addition to any system.

# **Ordering Information**

## **Standard Models**

| 85-265 VAC Model                           | 12-24 VDC Model | Options Installed                   |
|--------------------------------------------|-----------------|-------------------------------------|
| PD6100-6R0                                 | PD6100-7R0      | No options                          |
| PD6100-6R2                                 | PD6100-7R2      | 2 relays (PD1102*)                  |
| PD6100-6R3                                 | PD6100-7R3      | 4-20 mA output (PD1103*)            |
| PD6100-6R4                                 | PD6100-7R4      | 4 relays (PD1104*)                  |
| PD6100-6R5                                 | PD6100-7R5      | 2 relays & 4-20 mA output (PD1105*) |
| PD6100-6R7                                 | PD6100-7R7      | 4 relays & 4-20 mA output (PD1107*) |
| *Model number for replacement option card. |                 |                                     |

## SunBright Display Models

| 85-265 VAC Model                           | 12-24 VDC Model | Options Installed                   |
|--------------------------------------------|-----------------|-------------------------------------|
| PD6100-6H0                                 | PD6100-7H0      | No options                          |
| PD6100-6H2                                 | PD6100-7H2      | 2 relays (PD1102*)                  |
| PD6100-6H3                                 | PD6100-7H3      | 4-20 mA output (PD1103*)            |
| PD6100-6H4                                 | PD6100-7H4      | 4 relays (PD1104*)                  |
| PD6100-6H5                                 | PD6100-7H5      | 2 relays & 4-20 mA output (PD1105*) |
| PD6100-6H7                                 | PD6100-7H7      | 4 relays & 4-20 mA output (PD1107*) |
| *Model number for replacement option card. |                 |                                     |

## **Accessories**

| Model     | Description                                               |
|-----------|-----------------------------------------------------------|
| PDA1002   | DIN rail mounting kit for two expansion modules           |
| PDA1004   | 4 SPST (Form A) relays                                    |
| PDA1044   | 4 digital inputs & 4 digital outputs (2 may be connected) |
| PDA1232   | RS-232 serial adapter                                     |
| PDA1485   | RS-485 serial adapter                                     |
| PDA7485-I | RS-232 to RS-422/485 isolated converter                   |
| PDA7485-N | RS-232 to RS-422/485 non-isolated converter               |
| PDA8232-N | USB to RS-232 non-isolated converter                      |
| PDA8485-I | USB to RS-422/485 isolated converter                      |
| PDA8485-N | USB to RS-422/485 non-isolated converter                  |
| PDX6901   | Suppressor (snubber): 0.01 $\mu$ F/470 $\Omega$ , 250 VAC |

# **Specifications**

Except where noted all specifications apply to operation at +25°C.

| General                |                                                                                                                                                                                                                                                                                             |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Display                | Line 1: 0.60" (15 mm) high, red LEDs<br>Line 2: 0.46" (12 mm) high, red LEDs<br>6 digits each (-99999 to 999999),<br>with lead zero blanking                                                                                                                                                |
| Display<br>Intensity   | Eight user selectable intensity levels                                                                                                                                                                                                                                                      |
| Display<br>Update Rate | 5/second (200 ms)                                                                                                                                                                                                                                                                           |
| Overrange              | Display flashes 999999                                                                                                                                                                                                                                                                      |
| Underrange             | Display flashes -99999                                                                                                                                                                                                                                                                      |
| Display<br>Assignment  | The displays may be assigned to PV1, PV2, PCT, max & min, set points, PV & units, units (lower display only), net & gross weight, Modbus input, and display millivolts.                                                                                                                     |
| Units                  | lb, kg, ounce, gram, ton, metric ton (tonne), custom units.                                                                                                                                                                                                                                 |
| Programming<br>Methods | Four front panel buttons, digital inputs, PC and MeterView Pro software, or Modbus registers.                                                                                                                                                                                               |
| Noise Filter           | Programmable from 2 to 199 (0 will disable filter)                                                                                                                                                                                                                                          |
| Filter Bypass          | Programmable from 0.1 to 99.9% of calibrated span                                                                                                                                                                                                                                           |
| Rounding               | Select 1, 2, 5, 10, 20, 50, or 100<br>(e.g. rounding = 10, value = 123.45,<br>display = 123.50).                                                                                                                                                                                            |
| Recalibration          | All ranges are calibrated at the factory. Recalibration is recommended at least every 12 months.                                                                                                                                                                                            |
| Max/Min<br>Display     | Max/min readings reached by the process are stored until reset by the user or until power to the meter is cycled.                                                                                                                                                                           |
| Password               | Three programmable passwords restrict modification of programmed settings.  Pass 1: Allows use of function keys and digital inputs  Pass 2: Allows use of function keys, digital inputs and editing set/reset points  Pass 3: Restricts all programming, function keys, and digital inputs. |
| Non-Volatile<br>Memory | All programmed settings are stored in non-volatile memory for a minimum of ten years if power is lost.                                                                                                                                                                                      |

| Power<br>Options                   | 85-265 VAC 50/60 Hz, 90-265 VDC,<br>20 W max or 12-24 VDC ± 10%, 15 W<br>max. Powered over USB for<br>configuration only.                  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Fuse                               | Required external fuse: UL<br>Recognized, 5 A max, slow blow; up<br>to 6 meters may share one 5 A fuse                                     |
| Isolated<br>Sensor Power<br>Supply | Terminals EX+ & EX-: 10 VDC or 5 VDC $\pm$ 10%, rated @ 350 mA max.                                                                        |
|                                    | Note: Do not use 24 VDC to power strain gauge bridge.                                                                                      |
| Normal Mode<br>Rejection           | Greater than 60 dB at 50/60 Hz                                                                                                             |
| Isolation                          | 4 kV input-to-power line<br>500 V input-to-output (powered by<br>external supply)                                                          |
| Overvoltage<br>Category            | Installation Overvoltage Category II:<br>Local level with smaller transient<br>overvoltages than Installation<br>Overvoltage Category III. |
| Environmental                      | Operating temperature range: - 40 to 65°C Storage temperature range: -40 to 85°C Relative humidity: 0 to 90% non- condensing               |
| Connections                        | Removable screw terminal blocks accept 12 to 22 AWG wire, RJ45 for external relays, digital I/O, and serial communication adapters.        |
| Enclosure                          | 1/8 DIN, high impact plastic, UL 94V-0, color: black                                                                                       |
| Mounting                           | 1/8 DIN panel cutout required:<br>3.622" x 1.772" (92 mm x 45 mm)<br>Two panel mounting bracket<br>assemblies are provided.                |
| Tightening<br>Torque               | Screw terminal connectors: 5 lb-in (0.56 Nm)                                                                                               |
| Overall<br>Dimensions              | 4.68" x 2.45" x 5.64" (119 mm x 62<br>mm x 143 mm)<br>(W x H x D)                                                                          |
| Weight                             | 9.5 oz (269 g)                                                                                                                             |
| Warranty                           | 3 years parts & labor                                                                                                                      |
|                                    |                                                                                                                                            |

## Strain Gauge Input

|                                  | mpat                                                                                                      |                          |
|----------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------|
| Inputs                           | Field selectable: 0-0-300 mV, ±15, ±2 mV, or Modbus PV                                                    | 5, ±150, ±250            |
| Accuracy                         | ±0.03% of calibrat                                                                                        | ed span ±1 count         |
| Minimum Load<br>Resistance       | 14 Ω @ 5 V<br>28 Ω @ 10 V                                                                                 |                          |
| Maximum<br>Excitation<br>Current | 350 mA @ 5 V or                                                                                           | 10 V                     |
| Temperature<br>Drift             | 0.002% of calibrat<br>from 0 to 65°C am<br>0.005% of calibrat<br>from -30 to 0°C ar                       | bient,<br>ed span/°C max |
| Functions                        | Linear with multi-p                                                                                       | oint linearization       |
| Multi-Point<br>Linearization     | 2 to 32 points for F<br>2 to 8 points for P<br>feature)                                                   |                          |
| Low-Flow<br>Cutoff               | 0-999999 (0 disab                                                                                         | les cutoff function)     |
| Decimal Point                    | Up to five decimal places or none: dddddd, ddddd, ddddd, dddd, ddd, dd, or dddddd                         |                          |
| Calibration<br>Range             | Input Range 15 mV 25 mV, 30 mV 150 mV 250 mV, 300 mV An Error message input 1 and input 2 close together. | 2 signals are too        |
| Input<br>Impedance               | Strain Gauge Brid<br>10 MΩ<br>mV Source: 200 k                                                            |                          |

# Relays

| Rating                 | 2 or 4 SPDT (Form C) internal and/or<br>4 SPST (Form A) external; rated 3 A<br>@ 30 VDC and 125/250 VAC<br>resistive load; 1/14 HP (≈ 50 W) @<br>125/250 VAC for inductive loads                                                                                                                                                                                                                                          |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Noise<br>Suppression   | Noise suppression is recommended for each relay contact switching inductive loads; see page 16 for details.                                                                                                                                                                                                                                                                                                               |
| Deadband               | 0-100% of span, user programmable                                                                                                                                                                                                                                                                                                                                                                                         |
| High Or Low<br>Alarm   | User may program any alarm for high or low trip point. Unused alarm LEDs and relays may be disabled (turn off).                                                                                                                                                                                                                                                                                                           |
| Relay<br>Operation     | Automatic (non-latching) Latching (requires manual acknowledge) Sampling (based on time) Pump alternation control (2 to 8 relays) Off (disable unused relays and enable Interlock feature) Manual on/off control mode                                                                                                                                                                                                     |
| Relay Reset            | User selectable via front panel buttons or digital inputs  1. Automatic reset only (non-latching), when the input passes the reset point.  2. Automatic + manual reset at any time (non-latching)  3. Manual reset only, at any time (latching)  4. Manual reset only after alarm condition has cleared (L)  Note: Front panel button or digital input may be assigned to acknowledge relays programmed for manual reset. |
| Time Delay             | 0 to 999.9 seconds, on & off relay<br>time delays<br>Programmable and independent for<br>each relay                                                                                                                                                                                                                                                                                                                       |
| Fail-Safe<br>Operation | Programmable and independent for each relay.  Note: Relay coil is energized in non-alarm condition. In case of power failure, relay will go to alarm state.                                                                                                                                                                                                                                                               |
| Auto<br>Initialization | When power is applied to the meter, relays will reflect the state of the input to the meter.                                                                                                                                                                                                                                                                                                                              |

## Isolated 4-20 mA Transmitter Output

| Process variable (PV), max, min, set points 1-8, Modbus input, or manual control mode                                                                                                                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.000 to 23.000 mA for any display range                                                                                                                                                                                                         |  |
| Factory calibrated: 0.00 to 100.00 = 4-20 mA output                                                                                                                                                                                              |  |
| 1.000 mA minimum and 23.000 mA maximum for all parameters: overrange, underrange, max, min, and break                                                                                                                                            |  |
| ± 0.1% of span ± 0.004 mA                                                                                                                                                                                                                        |  |
| 0.4 μA/°C max from 0 to 65°C ambient,<br>0.8 μA/°C max from -40 to 0°C ambient<br>Note: Analog output drift is separate from input drift.                                                                                                        |  |
| Terminals I+ & R: 24 VDC ± 10% isolated from the input at >500 V. May be used to power the 4-20 mA output or other devices (except load cell/strain gauge). Refer to Figure 6 on page 12 and Figure 17 on page 17. All models rated @ 40 mA max. |  |
| 35 VDC maximum                                                                                                                                                                                                                                   |  |
| Power supply Minimum Maximum                                                                                                                                                                                                                     |  |
| 24 VDC $10 \Omega$ $700 \Omega$                                                                                                                                                                                                                  |  |
| 35 VDC 100 Ω 1200 Ω (external)                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                  |  |

## **Modbus® RTU Serial Communications**

| Slave ID                                                                                | 1 – 247 (Meter address)                                                             |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Baud Rate                                                                               | 300 – 19,200 bps                                                                    |
| Transmit<br>Time Delay                                                                  | Programmable between 0 and 199 ms or transmitter always on for RS-422 communication |
| Data                                                                                    | 8 bit (1 start bit, 1 or 2 stop bits)                                               |
| Parity                                                                                  | Even, Odd, or None with 1 or 2 stop bits                                            |
| Byte-to-Byte<br>Timeout                                                                 | 0.01 - 2.54 second                                                                  |
| Turn Around<br>Delay                                                                    | Less than 2 ms (fixed)                                                              |
| Note: Refer to the PROVU® Modbus Register Tables located at www.predig.com for details. |                                                                                     |

## **MeterView Pro**

| System         | Microsoft® Windows®              |
|----------------|----------------------------------|
| Requirements   | XP/Vista/7/8/10                  |
| Communications | USB 2.0 (Standard USB A to Micro |
|                | USB B)                           |
| Configuration  | Configure meters one at a time   |

# **Compliance Information Safety**

| UL & c-UL Listed                   | USA & Canada                                                     |
|------------------------------------|------------------------------------------------------------------|
|                                    | UL 508 Industrial Control Equipment                              |
| UL File Number                     | E160849                                                          |
| Front Panel                        | UL Type 4X, NEMA 4X, IP65; panel gasket provided                 |
| <b>Low Voltage</b> EN 61010-1:2010 |                                                                  |
| Directive                          | Safety requirements for measurement, control, and laboratory use |
| <b>Electromagnetic C</b>           | ompatibility                                                     |
| EMISSIONS                          | EN 55022:2010                                                    |
|                                    | Class A ITE emissions requirements                               |
| Radiated Emissions                 | Class A                                                          |
| AC Mains Conducted                 | Class A                                                          |
| Emissions                          |                                                                  |
| IMMUNITY                           | EN 61326-1:2013                                                  |
|                                    | Measurement, control, and laboratory equipment                   |
|                                    | EN 61000-6-2:2005                                                |
|                                    | EMC heavy industrial generic immunity standard                   |
| RFI - Amplitude                    | 80 -1000 MHz 10 V/m 80% AM (1 kHz)                               |
| Modulated                          | 1.4 - 2.0 GHz 3 V/m 80% AM (1 kHz)                               |
|                                    | 2.0 - 2.7 GHz 1 V/m 80% AM (1 kHz)                               |
| Electrical Fast                    | ±2kV AC mains, ±1kV other                                        |
| Transients                         |                                                                  |
| Electrostatic                      | ±4kV contact, ±8kV air                                           |
| Discharge                          |                                                                  |
| RFI - Conducted                    | 10V, 0.15-80 MHz, 1kHz 80% AM                                    |
| AC Surge                           | ±2kV Common, ±1kV Differential                                   |
| Surge                              | 1KV (CM)                                                         |
| Power-Frequency                    | 30 A/m 70%V for 0.5 period                                       |
| Magnetic Field                     |                                                                  |
| Voltage Dips                       | 40%V for 5 & 50 periods                                          |
|                                    | 70%V for 25 periods                                              |
| Voltage Interruptions              | <5%V for 250 periods                                             |
|                                    |                                                                  |

#### Note.

Testing was conducted on PD6100 meters installed through the covers of grounded metal enclosures with cable shields grounded at the point of entry representing installations designed to optimize EMC performance.

Declaration of Conformity available at www.predig.com

## **Safety Information**

CAUTION: Read complete instructions prior to installation and operation of the meter.

WARNING: Risk of electric shock or personal injury.



Hazardous voltages exist within enclosure. Installation and service should be performed only by trained service personnel.

## Installation

There is no need to remove the meter from its case to complete the installation, wiring, and setup of the meter for most applications.

Instructions are provided for changing the sensor power supply to output 5 or 10 VDC instead of 24 VDC on page 11.

## Unpacking

Remove the meter from box. Inspect the packaging and contents for damage. Report damages, if any, to the carrier.

If any part is missing or the meter malfunctions, please contact your supplier or the factory for assistance.

## **Panel Mounting Instructions**

- Prepare a standard 1/8 DIN panel cutout 3.622" x 1.772" (92 mm x 45 mm). Refer to Figure below, for more details.
- Clearance: allow at least 6.0" (152 mm) behind the panel for wiring.
- Panel thickness: 0.04" 0.25" (1.0 mm 6.4 mm).
   Recommended minimum panel thickness to maintain Type 4X rating: 0.06" (1.5 mm) steel panel, 0.16" (4.1 mm) plastic panel.
- Remove the two mounting brackets provided with the meter (back-off the two screws so that there is ¼" (6.4 mm) or less through the bracket. Slide the bracket toward the front of the case and remove).
- Insert meter into the panel cutout.
- Install mounting brackets and tighten the screws against the panel. To achieve a proper seal, tighten
  the mounting bracket screws evenly until meter is snug to the panel along its short side. DO NOT
  OVER TIGHTEN, as the rear of the panel may be damaged.

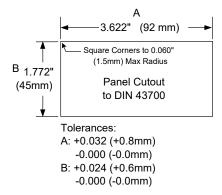



Figure 1. 1/8 DIN Panel Cutout Dimensions

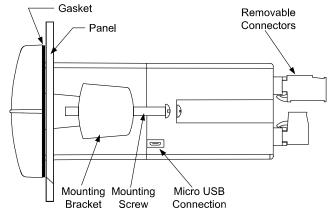



Figure 2. Panel Mounting Details

## **Mounting Dimensions**

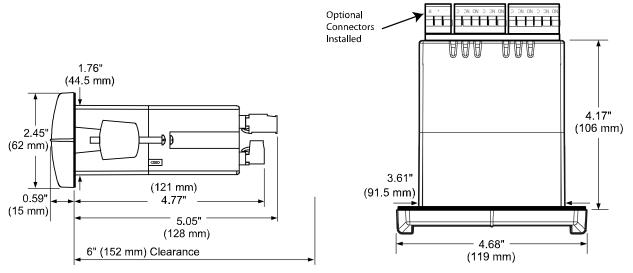



Figure 3. Meter Dimensions - Side View

Figure 4. Meter Dimensions - Top View

## **Sensor Excitation Voltage Selection (EX+, EX-)**

All meters, including models equipped with the 12-24 VDC power option, are shipped from the factory configured to provide 10 VDC excitation for the sensor.

If the sensor requires 5 VDC excitation, the internal jumper J3 must be configured accordingly.

To access the voltage selection jumper:

- 1. Remove all the wiring connectors.
- 2. Unscrew the back cover.
- 3. Slide out the back cover by about 1 ½ inches.
- 4. Configure the J3 jumper, located behind the input signal connector, for the desired excitation voltage as shown.

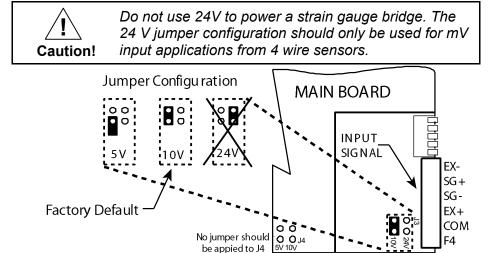



Figure 5. Sensor Excitation Voltage Selection

## **Connections**

All connections are made to removable screw terminal connectors located at the rear of the meter.



Use copper wire with 60°C or 60/75°C insulation for all line voltage connections. Observe all safety regulations. Electrical wiring should be performed in accordance with all applicable national, state, and local codes to prevent damage to the meter and ensure personnel safety.

#### Connectors Labeling

The connectors' label, affixed to the meter, shows the location of all connectors available with requested configuration.



Do not connect any equipment other than Precision Digital's expansion modules, cables, or meters to the RJ45 M-LINK connector. Otherwise damage will occur to the equipment and the meter.

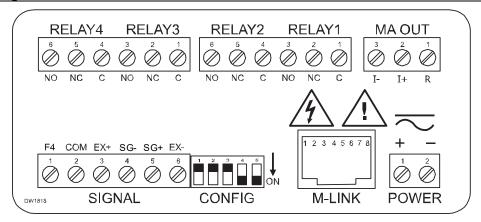
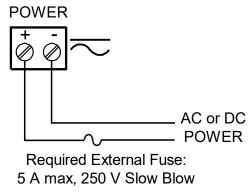




Figure 6. Connector Labeling for Fully Loaded PD6100

#### **Power Connections**

Power connections are made to a two-terminal connector labeled POWER on Figure 6. The meter will operate regardless of DC polarity connection. The + and - symbols are only a suggested wiring convention.



**Figure 7. Power Connections** 

## **Signal Connections**

Signal connections are made to a six-terminal connector labeled SIGNAL on Figure 6. The EX+ and EX-terminals are used to sense the sensor excitation voltage for ratiometric operation, when the sensor is powered externally (switch 1 is off).

## **Switch Configuration**

Setup and programming is performed both through the front panel buttons and switch settings shown below. The switch configuration must correspond to the setup and programming starting on page 29 (same range, type, etc.).

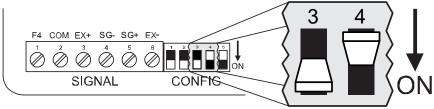



Figure 8. Strain Gauge Configuration Switch

#### **Excitation (Switch 1)**

The excitation switch designates whether the meter will use its internal power supply or an external power supply.

| Switch 1 | ON  | Excitation | Internal Excitation | When switch is turned ON, the ProVu's power supply is used.  |
|----------|-----|------------|---------------------|--------------------------------------------------------------|
| OWITCH   | OFF | Excitation | External Excitation | When switch is turned OFF, an external power supply is used. |

#### Range (Switch 2)

The range switch adjusts the gain of the internal circuitry. Narrower ranges require more amplification.

| Switch 2 | ON  | Range | Higher internal gain       | Turn this switch ON for the following input ranges: 15, 30, ±15, or ±25 mV.      |
|----------|-----|-------|----------------------------|----------------------------------------------------------------------------------|
| OWITCH 2 | OFF | Range | <u>Lower</u> internal gain | Turn this switch OFF for the following input ranges: 150, 300, ±150, or ±250 mV. |

#### Polarity (Switch 3)

The polarity switch selects whether the range is unipolar and starts at zero (i.e. 0 to 30 mV) or bipolar and starts at a negative value, or below zero (i.e. -15 to +15 mV).

| Switch 3 | ON Polarity | Polarity | Range <u>starts</u> at zero (unipolar)   | Turn this switch ON for the following input ranges: 15, 30, 150, or 300.         |
|----------|-------------|----------|------------------------------------------|----------------------------------------------------------------------------------|
| OWITCH 5 | OFF         | Polarity | Range <u>starts</u> below zero (bipolar) | Turn this switch OFF for the following input ranges: ±15, ±25, ±150, or ±250 mV. |

#### Source (Switch 4)

The source switch tells the ProVu whether the input is a strain gauge bridge (i.e. Figure 11), or it is a signal from a 2 or 4 wire transducer, or mV source (i.e. Figure 12)

| Switch 4 | ON  | Source | Source is mV input transducer | Turn this switch ON if the connected source is a transducer* |
|----------|-----|--------|-------------------------------|--------------------------------------------------------------|
| OWITOH 4 | OFF | Source | Source is strain gauge bridge | Turn this switch OFF if the source is a strain gauge bridge  |

\*Ratio should be set to NO in Setup Input Menu

#### **Shunt Resistor (Switch 5)**

The PD6100 provides a means of simulating strain in a strain gauge bridge circuit via a  $60.4 \text{K}\Omega$  shunt resistor included in the meter. This will simulate an approximate 70% full-scale load in the case of a  $350\Omega$  strain bridge.

| Switch 5  | ON  | Shunt | Shunt resistor is <u>connected</u> to the input bridge.      | Turn switch ON when you want to simulate a strain load |
|-----------|-----|-------|--------------------------------------------------------------|--------------------------------------------------------|
| OWITO!! 3 | OFF | Shunt | Shunt resistor is <u>disconnected</u> from the input bridge. | Turn this switch OFF to remove the shunt resistor      |

## **Strain Gauge Connections**

The following figures show examples of strain gauge connections.

There is a 5-position DIP switch (CONFIG) to set up the input ranges and ratiometric operation.

NOTE: Refer to Switch Configuration starting on page 13 for proper configuration switch positioning.

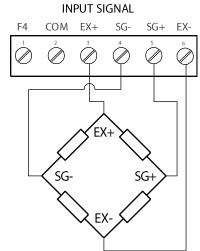



Figure 9. Strain Gauge Powered by Internal Supply

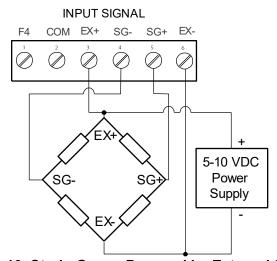



Figure 10. Strain Gauge Powered by External Supply

# NOTE: Refer to Switch Configuration starting on page 13 for proper switch positioning for the following wiring configurations.

When connecting multiple strain gauges to the meter, each must be wired in parallel. This is typically done with the use of a junction box.

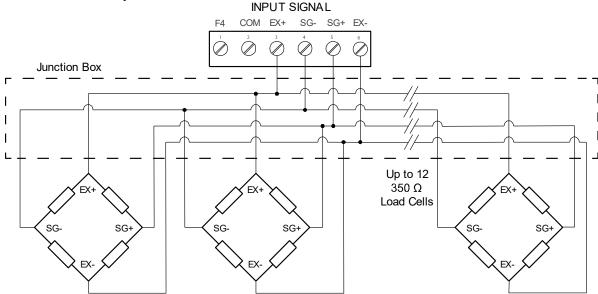



Figure 11. Multiple Strain Gauges Connected Through Junction Box

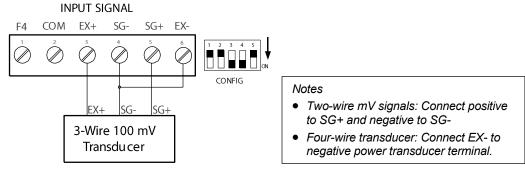



Figure 12. mV Transducer Input Connections

## **Shunt Calibration**

The PD6100 is equipped with a means of simulating strain in a strain gauge bridge circuit, via an included shunt resistor in the meter. This technique is performed by enabling the "shunt resistor" switch (switch 5), which in turn shunts one leg of a connected strain bridge with a predetermined resistive load (60.4k). This technique can be used as a means of verifying instrumentation by simulating a physical input. With no load connected, the enabling of the shunt resistor (switch 5) will simulate approximately a 70% F.S. load in the case of a  $350\Omega$  Strain Bridge.

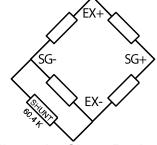



Figure 13. Shunt Resistor

#### **Modbus RTU Serial Communications**

Serial communications connection is made to an RJ45 connector labeled M-LINK on Figure 6. Use the PDA1232 for RS-232 interfacing or the PDA1485 for RS-485 interfacing. The same port is used for interfacing with all expansion modules (*e.g.* external relays, digital I/O).

## **Relay Connections**

Relay connections are made to two six-terminal connectors labeled RELAY1 – RELAY4 on Figure 6. Each relay's C terminal is common only to the normally open (NO) and normally closed (NC) contacts of the corresponding relay. The relays' C terminals should not be confused with the COM (common) terminal of the INPUT SIGNAL connector.

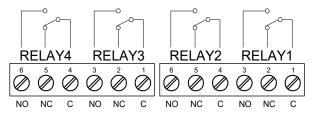



Figure 14. Relay Connections

#### **Switching Inductive Loads**

The use of suppressors (snubbers) is strongly recommended when switching inductive loads to prevent disrupting the microprocessor's operation. The suppressors also prolong the life of the relay contacts. Suppression can be obtained with resistor-capacitor (RC) networks assembled by the user or purchased as complete assemblies. Refer to the following circuits for RC network assembly and installation:

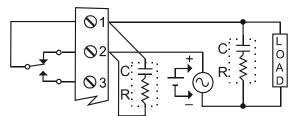
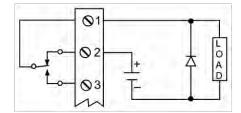



Figure 15. AC and DC Loads Protection


Choose R and C as follows:

R: 0.5 to  $1~\Omega$  for each volt across the contacts

C: 0.5 to 1 µF for each amp through closed contacts

#### Notes:

- 1. Use capacitors rated for 250 VAC.
- 2. RC networks may affect load release time of solenoid loads. Check to confirm proper operation.
- 3. Install the RC network at the meter's relay screw terminals. An RC network may also be installed across the load. Experiment for best results.



Use a diode with a reverse breakdown voltage two to three times the circuit voltage and forward current at least as large as the load current.

Figure 16. Low Voltage DC Loads Protection

#### **RC Networks Available from Precision Digital**

RC networks are available from Precision Digital and should be applied to each relay contact switching an inductive load. Part number: PDX6901.

Note: Relays are de-rated to 1/14th HP (50 watts) with an inductive load.

## 4-20 mA Output Connections

Connections for the 4-20 mA transmitter output are made to the connector terminals labeled MA OUT. The 4-20 mA output may be powered internally or from an external power supply.

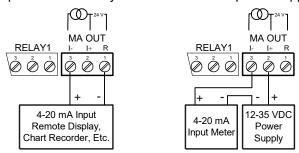



Figure 17. 4-20 mA Output Connections

## **Analog Output Power Supply**

If the analog output is not using the 24 VDC supply to power the output loop, it can be used for other things. The I+ Terminal is the +24 V and the R terminal is the return.

## **F4 Digital Input Connections**

A digital input, F4, is standard on the meter. This digital input is connected with a normally open contact across F4 and COM, or with an active low signal applied to the F4.

The functionality of the F4 input is set up in the Advanced Features, *User* menu.

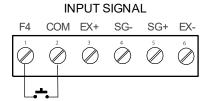



Figure 18. F4 Digital Input Connections

## **External Relays & Digital I/O Connections**

The relay and the digital I/O expansion modules PDA1004 & PDA1044 are connected to the meter using a CAT5 cable provided with each module. The two RJ45 connectors on the expansion modules are identical and interchangeable; they are used to connect additional modules to the system.

Note: The jumper located between the RJ45 connectors of the PDA1044 must be removed on the second digital I/O module in order for the system to recognize it as module #2.



Do not connect or disconnect the expansion modules with the power on!

More detailed instructions are provided with each optional expansion module.

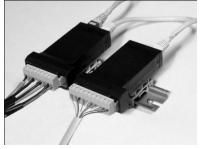



Figure 19. Expansion Modules & DIN Rail Mounting Kit

Figure 20. External Relays Module Connections

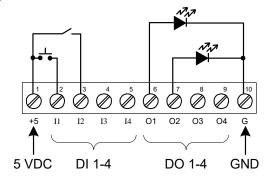



Figure 21. Digital I/O Module Connections

## **Interlock Relay Feature**

As the name implies, the interlock relay feature reassigns one, or more, alarm/control relays for use as interlock relay(s). Interlock contact(s) are wired to digital input(s) and trigger the interlock relay. This feature is enabled by configuring the relay, and relative digital input(s) (see page 40). In one example, dry interlock contacts are connected in series to one digital input which will be used to force on (energize) the assigned interlock power relay when all interlock contacts are closed (safe). The interlock relay front panel LED flashes when locked out. The interlock relay would be wired in-series with the load (N/O contact). See below.

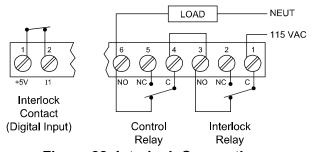



Figure 22. Interlock Connections

## **Setup and Programming**

The meter is factory calibrated prior to shipment to read in millivolts. The calibration equipment is certified to NIST standards.

#### Overview

There is a 5-position DIP switch to set the meter input selection. See Figure 8 on page 13 to setup the switch.

Setup and programming is done through the front panel buttons.

After power and input signal connections have been completed and verified, apply power to the meter.

## **Front Panel Buttons and Status LED Indicators**



| Button<br>Symbol | Description    |
|------------------|----------------|
| MENU             | Menu           |
| F1               | Right arrow/F1 |
| ZERO             | Zero Meter     |
| F2               | Up arrow/F2    |
| RST              | Reset Tare     |
| F3               | Enter/F3       |
| TARE             | Tare           |
|                  |                |

Note:

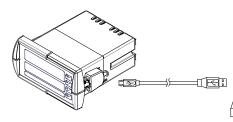
Alarms 5-8 are enabled when relay expansion module is installed.

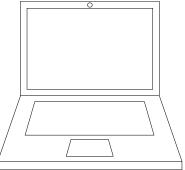
| LED                       | Status               |  |  |  |
|---------------------------|----------------------|--|--|--|
| 1-8                       | Alarm 1-8 indicator  |  |  |  |
| 1-8                       | Flashing: Relay in   |  |  |  |
| M                         | manual control mode  |  |  |  |
| T                         | Flashing: Tare (Net) |  |  |  |
| G                         | Gross                |  |  |  |
| 1-4                       | Flashing: Relay      |  |  |  |
| interlock switch open     |                      |  |  |  |
| Note:                     | Note:                |  |  |  |
| LEDs for relays in manual |                      |  |  |  |

mode flash with the "M" LED

every 10 seconds.

- Press the Menu button to enter or exit the Programming Mode at any time.
- Press the Right arrow button to move to the next digit during digit or decimal point programming.
- Press or hold the Up arrow button to scroll through the menus, decimal point, or to increment the value of a digit.
- Press the Enter button to access a menu or to accept a setting.
- Press and hold the Menu button for three seconds to access the advanced features of the meter.


## MeterView® Pro Software


The meter can also be programmed using the PC-based MeterView Pro software included with the meter. This software can be installed on any Microsoft® Windows® (XP/Vista/7/8/10) computer by connecting the meter's onboard USB. The meter is powered by the USB connection, so there is no need to wire anything prior to programming the meter, though USB is intended only for meter configuration.

#### MeterView Pro Installation

1. Connect one end of the provided USB cable to the meter and the other end to the computer. The computer will automatically install the driver software it needs to talk to the meter.

Only one meter may be connected at a time. Attaching multiple meters will cause a conflict with the meter software.





- Once the driver is installed, an AutoPlay dialog should appear for the drive "MAINSTAL." Click "Open folder to view files." If the computer does not display an AutoPlay dialog for the drive "MAINSTAL," you should open My Computer and doubleclick on the drive labeled "MAINSTAL."
- Double-click on the file named "MAStart." The program will open a few windows and install two programs on your computer. Simply follow the onscreen instructions until you see one of the dialogs below. If you receive a "User Account Control" warning, click "Yes."
- 4. If there is an update available, click the "Update" button to install the new version. Otherwise, click "Configure" to begin programming your meter.







**Note:** If you decide to update your MeterView Pro software, once the installation has completed, you will be asked if you want to update the setup files located on the meter itself. This way, you will always have the most current version on the meter for future installs.



Do not unplug the meter while the new installation files are being written to it. The meter will display יבע ובּבּ during the process and you will receive an onscreen notification once the process is complete.

Data logging for one meter at a time is available with MeterView Pro software. More advanced data acquisition may be accomplished by using any Modbus RTU compliant software. Additional information regarding configuration and monitoring of the meter using MeterView Pro software is available online. Go to www.predig.com/meterview-pro.

# **Display Functions & Messages**

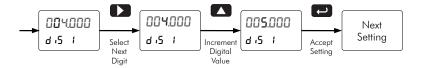
The meter displays various functions and messages during setup, programming, and operation. The following table shows the main menu functions and messages in the order they appear in the menu.

| Display | Parameter   | Action/Setting<br>Description                                                      | Display  | Parameter         | Action/Setting<br>Description                                                |
|---------|-------------|------------------------------------------------------------------------------------|----------|-------------------|------------------------------------------------------------------------------|
| SEŁup   | Setup       | Enter <i>Setup</i> menu                                                            | SERL 1   | Scale 1           | Enter the <i>Scale</i> menu                                                  |
| InPut   | Input       | Enter <i>Input</i> selection menu                                                  | SERL 2   | Scale 2           | for PV1  Enter the <i>Scale</i> menu                                         |
| PoLAr   | Polar       | Enter unipolar or bipolar selection menu                                           | ERL      | Calibrate         | for PV2 Enter the Calibration                                                |
| וחנו    | Unipolar    | Press Enter to select<br>operation with positive<br>signals only (e.g. 0-30<br>mV) | InP 1    | Input 1           | menu  Calibrate input 1 signal or program input 1 value                      |
| b.      | Bipolar     | Press Enter to select operation with positive                                      | d 15 1   | Display 1         | Program display 1<br>value                                                   |
|         |             | & negative signals<br>(e.g. ±15 mV)                                                | InP 2    | Input 2           | Calibrate input 2 signal or program input 2                                  |
| -8nGE   | Range       | Enter range selection menu                                                         | d .5 2   | Dianter           | value (up to 32 points)                                                      |
| 15 nu   | 15 mV       | Set meter for 15 mV input (uni/bi)                                                 |          | Display 2         | Program display 2 value (up to 32 points)                                    |
| 25 nu   | 25 mV       | Set meter for ±25 mV input (bi)                                                    | Error    | Error             | Error, calibration not<br>successful, check<br>signal or programmed<br>value |
| 30 ou   | 30 mV       | Set meter for 30 mV input (uni)                                                    | 4SPLRY   | Display           | Enter the <i>Display</i>                                                     |
| טר 150  | 150 mV      | Set meter for 150 mV input (uni/bi)                                                | LinE 1   | Line 1            | menu Press Enter to assign                                                   |
| 250 u   | 250 mV      | Set meter for ±250 mV input (bi)                                                   | £ 1712 1 | LIIIQ I           | the upper display parameter (default: PV)                                    |
| 300 ru  | 300 mV      | Set meter for 300 mV input (uni)                                                   | L INE 2  | Line 2            | Press Enter to assign the lower display                                      |
| c RE 10 | Ratiometric | Press Enter to select ratiometric operation to                                     |          |                   | parameter (default:<br>engineering units)                                    |
|         |             | compensate for excitation changes.                                                 | q- lufi  | Display intensity | Set display intensity level from 1 to 8                                      |
| 4-SERL  | Dual-Scale  | Press Enter to select dual-scale display                                           | rELRY    | Relay             | Enter the <i>Relay</i> menu                                                  |
|         |             | (Select Yes or No)                                                                 | rLY 1    | Relay 1           | Relay 1 setup                                                                |
| טה 155  | Units       | Select the display                                                                 | Rct 1    | Action 1          | Set relay 1 action                                                           |
| dEc Pt  | Decimal     | units/tags Set decimal point                                                       | Ruto     | Automatic         | Set relay for automatic reset                                                |
|         | point       |                                                                                    | 8-0780   | Auto-             | Set relay for automatic                                                      |
| Pu (    | PV1         | PV1 decimal point (dual-scale)                                                     |          | manual            | & manual reset any time                                                      |
| Pu 2    | PV2         | PV2 decimal point (dual-scale)                                                     | F&FCX    | Latching          | Set relay for latching operation                                             |
| ProG    | Program     | Enter the <i>Program</i> menu                                                      |          |                   |                                                                              |
| SCALE   | Scale       | Enter the Scale menu                                                               |          |                   |                                                                              |

# PROVU PD6100 Strain Gauge, Load Cell, & mV Meter Instruction Manual

| Parameter            | Action/Setting<br>Description                                                                                                           |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Latching-<br>cleared | Set relay for latching operation with manual reset only after alarm condition has cleared                                               |
| Alternate            | Set relay for<br>alternation control                                                                                                    |
| Sampling             | Set relay for sampling operation                                                                                                        |
| Off                  | Disable relay and front<br>panel status LED<br>(Select Off to enable<br>Interlock feature)                                              |
| Set 1                | Program set point 1                                                                                                                     |
| Reset 1              | Program reset point 1                                                                                                                   |
| Relay 2              | Relays 2-8 setup<br>Note: Relays 5-8 are<br>shown, only if<br>expansion relay<br>module is installed.                                   |
| Fail-safe            | Enter <i>Fail-safe</i> menu                                                                                                             |
| Fail-safe 1          | Set relay 1 fail-safe operation                                                                                                         |
| On                   | Enable fail-safe operation                                                                                                              |
| Fail-safe 2          | Set relays 2-8 fail-safe operation                                                                                                      |
| Delay                | Enter relay <i>Time Delay</i> menu                                                                                                      |
| Delay 1              | Enter relay 1 time<br>delay setup                                                                                                       |
| On 1                 | Set relay 1 On time<br>delay                                                                                                            |
| Off 1                | Set relay 1 Off time<br>delay                                                                                                           |
| Delay 2              | Enter relays 2-8 time delay setup                                                                                                       |
| Analog               | Enter the <i>Analog</i> output scaling menu                                                                                             |
| σαιραι               | 3                                                                                                                                       |
| Display 1            | Program display 1 value                                                                                                                 |
|                      | Latching-cleared  Alternate Sampling Off  Set 1 Reset 1 Relay 2  Fail-safe Fail-safe 1 On Fail-safe 2  Delay Delay 1 On 1 Off 1 Delay 2 |

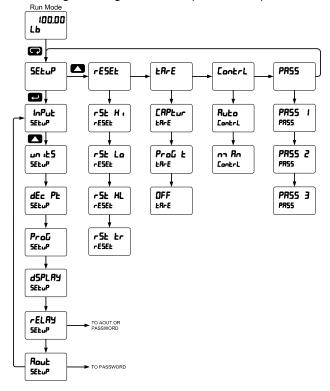
| Display          | Parameter           | Action/Setting<br>Description                                        |
|------------------|---------------------|----------------------------------------------------------------------|
| 4 .5 2           | Display 2           | Program display 2 value                                              |
| Onf 5            | Output 2            | Program output 2<br>value (e.g. 20.000 mA)                           |
| rESEŁ            | Reset               | Press Enter to access the <i>Reset</i> menu                          |
| rSE X i          | Reset high          | Press Enter to reset max display                                     |
| rSt Lo           | Reset low           | Press Enter to reset min display                                     |
| rSF HL           | Reset<br>high & low | Press Enter to reset max & min displays                              |
| r5t tr           | Reset tare          | Press Enter to reset tare                                            |
| ŁRrE             | Tare                | Enter <i>Tare</i> menu                                               |
| [RPŁur           | Capture             | Press Enter to set<br>meter to capture tare<br>using the Tare button |
| Proū Ł           | Programma<br>ble    | Press Enter to set meter to programmable tare and enter a value      |
| OFF              | Off                 | Press Enter to disable the tare function                             |
| Contrl           | Control             | Enter Control menu                                                   |
| Ruto             | Automatic           | Press Enter to set meter for automatic operation                     |
| n 18n            | Manual              | Press Enter to manually control relays or analog output operation    |
| PRSS             | Password            | Enter the <i>Password</i> menu                                       |
| PRSS (           | Password 1          | Set or enter Password 1                                              |
| PRSS 2           | Password 2          | Set or enter Password 2                                              |
| PRSS 3           | Password 3          | Set or enter Password 3                                              |
| nuroc            | Unlocked            | Program password to lock meter                                       |
| Locd             | Locked              | Enter password to unlock meter                                       |
| 999999<br>-99999 | Flashing            | Over/under range condition                                           |


## **Setting Numeric Values**

The numeric values are set using the Right and Up arrow buttons. Press Right arrow to select next digit and Up arrow to increment digit value.

The digit being changed is displayed brighter than the rest.

Press and hold up arrow to auto-increment the display value.

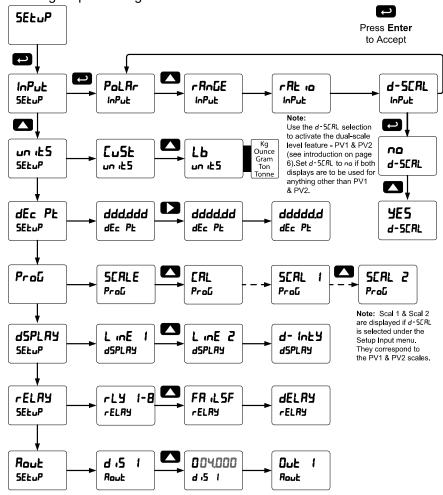

Press the Enter button, at any time, to accept a setting or Menu button to exit without saving changes.



## Main Menu

The main menu consists of the most commonly used functions: *Setup*, *Reset*, *Tare*, *Control*, and *Password*.

Press Menu button to enter Programming Mode then press the Up arrow button to scroll main menu.




- Press Menu, at any time, to exit and return to Run Mode. Changes made to settings prior to pressing Enter are not saved.
- Changes to the settings are saved to memory only after pressing Enter.
- The display moves to the next menu every time a setting is accepted by pressing Enter.

## Setting Up the Meter (5ELuP)

The Setup menu is used to select:


- 1. Unipolar (e.g. 0-30 mV) or bipolar (e.g. ±25 mV) polarity, input range, ratiometric operation, and dual-scale feature
- 2. Engineering units
- 3. Decimal point position
- 4. Program scaling or live calibration
- 5. Display parameter and intensity
- 6. Relay operation
- 7. 4-20 mA analog output scaling



## Setting the Input Signal ( InPut)

Enter the *Input* menu to set up the input polarity, range, ratiometric operation, and dual-scale feature. The meter is capable of accepting any signal from -250 to 250 mV in bipolar mode or up to 300 mV in unipolar mode.

After selecting "Yes" or "No" for ratio, d-5LRL is displayed. Selecting "Yes" enables the dual-scale feature, allowing scaling of the same input in two different scales (for PV1 & PV2) or displaying the percentage of PV1.



#### Input Polarity Selection (PoLRr)

Select unipolar operation for inputs in ranges from 0 to 300 mV and select bipolar operation for inputs in ranges from -250 mV to +250 mV. This setting determines the selectable ranges for the millivolt input.

NOTE: Refer to Switch Configuration starting on page 13 for proper switch positioning.

## Range Selection (¬Я¬БЕ)

This menu is used to select the input range. The selections listed are determined by the *Polarity* setting.

Unipolar mode: 0-15, 0-30, 0-150, 0-300 mV Bipolar mode: ±15, ±25, ±150, ±250 mV

NOTE: Refer to Switch Configuration starting on page 13 for proper switch positioning.

#### Ratiometric Operation ( FRE 10)

Ratiometric operation corrects the measured strain gauge signal for up to  $\pm 5\%$  variation of either the internal or external excitation power supply. In order to use the ratiometric operation, the ratiometric operation menu must be set to yes (4%5).

#### Dual-Scale (d-5EAL)

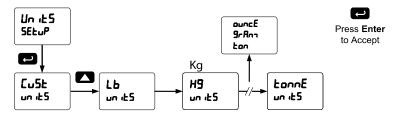
The analog input can be displayed in two different scales, by enabling the dual-scale feature in the *Setup-Input* menu, see page 25.

To enable the dual-scale feature you must select d-SCAL in the Input selection menu.

## PROVU PD6100 Strain Gauge, Load Cell, & mV Meter Instruction Manual

#### Setting the Input Units (un 125)

Enter the pre-defined engineering unit or custom unit. The pre-defined units have automatic conversion factors. This unit will be displayed if d un it is selected as the lower display parameter. See the flow chart on page 30 to access the display menu to show the unit on the lower display.


The custom unit may also be used to enter a display tag.

**Pre-defined engineering units**: lb, kg, ounce, gram, ton (short), tonne (metric ton). The meter converts the reading according to the unit selected (e.g. 100.00 lb = 45.36 kg = 45359.2 g = 1600 oz).

**Unit Conversions:** After scaling values in the *Scale* menu have been entered during setup, automatic unit conversions are done when switching from any standard unit to any other standard unit during future changes of the *Units* menu.

Once a standard unit has been selected in the units menu, the user must then set their scaling values for that unit (under the setup menu) in order for that unit's conversion factor to take effect. Otherwise, the meter will allow the user to freely switch between standard unit selections, without applying a conversion factor.

Note that if the dual-scale feature is selected in the *Setup* menu, both PV1 and PV2 will be converted from the original standard unit to the new standard unit. A scaled PV not scaled for the selected units must be reprogrammed. *Example*: If PV 1 is scaled for pounds, and PV 2 scaled for gallons; if the *Unit* 5 selection is changed from *Lb* to *punc E*, PV 2 will need to re-scaled manually back to gallons.



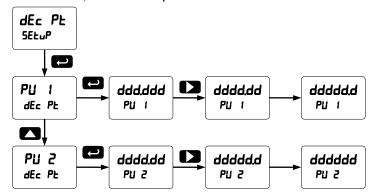
Note: PV1 and PV2 may use different standard units as starting points, however the user must select the unit and complete scaling for both PV1 and PV2 individually. For example, set PV1 equal to "Lbs" and complete the scaling for PV1 only. PV1 is now reading in Lbs. Then, change the units for PV2 to be "Kg" and complete the scaling for PV2. PV2 will read in kilograms and PV1 will reflect the conversion from Lbs to Kgs.

## Setting the Input Units or Custom Tags (un 125)

Enter the input unit or custom tag that will be displayed if units are selected in the unit5 menu, or d unit is selected as the lower display parameter. See the flow chart on page 30 to access the display menu to show the unit or tag on the lower display. The engineering units or custom legends can be set using the following 7-segment character set:

| Display | Character | Display | Character | Display | Character | Display | Character |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 0       | 0         | ריו     | С         | ×       | K         | נ       | V         |
| 1       | 1         | נ       | С         | -       | L         | רח      | W         |
| 2       | 2         | 4       | d         | חח      | m         | X       | Х         |
| 3       | 3         | F       | Е         | 0       | n         | y       | Υ         |
| Ч       | 4         | F       | F         | 0       | 0         | 2       | Z         |
| 5       | 5         | רי      | G         | ٥       | 0         | -       | -         |
| δ       | 6         | 9       | g         | P       | Р         | لم      | 1         |
| 7       | 7         | X       | Н         | 9       | q         | [       | ]         |
| 8       | 8         | h       | h         | ٢       | r         | ]       | [         |
| 9       | 9         | 1       | - 1       | 5       | S         | :       | =         |
| R       | Α         | 1       | i         | Ł       | t         | 0       | Degree(<) |
| Ъ       | b         | -1      | J         | נ       | u         |         | Space     |

Notes: Degree symbol represented by (<) if programming with MeterView® Pro. The letters "m" and "w" use two 7-segment LEDs each; when selected the characters to the right are shifted one position. Press and hold up arrow to auto-scroll the characters in the display.


#### Setting the Decimal Point (dEc PL)

The decimal point may be set with up to five decimal places or with no decimal point at all.

Pressing the Right arrow moves the decimal point one place to the right until no decimal point is displayed, and then it moves to the leftmost position.

Pressing the Up arrow moves the decimal point to the left.

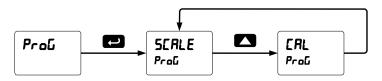
If the dual-scale feature is selected, the decimal point selections for PV1 & PV2 are enabled.



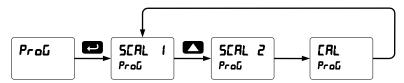
## Programming the Meter (Pro[])

The Program menu contains the Scale and the Calibrate menus.

For strain gauge and load cell applications it is **recommended to calibrate** the meter using the sensor as the input and with ratiometric operation enabled to compensate for small variation in the excitation voltage.


It is **very important** to read the following information, before proceeding to program the meter:

- The meter is factory calibrated prior to shipment to read in millivolts. The calibration equipment is certified to NIST standards.
- Use the *Scale* menu to scale the input (e.g. 0-100 mV). A calibrated signal source is not needed to scale the meter.
- The PD6100 is a single input meter with dual-scale capability.


If the dual-scale feature is selected in the *Setup* menu, the *Scale 1* and *Scale 2* menus are enabled for PV1 & PV2 respectively.

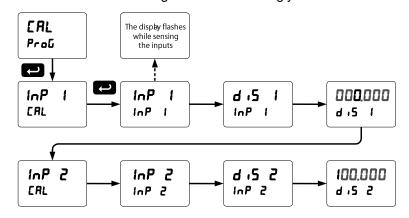
The process inputs may be calibrated or scaled to any display value within the range of the meter.

#### **Program Menu for Single Scale Process**



#### **Program Menu for Dual-Scale Applications**




Additional parameters, not needed for most applications, are programmed in the *Advanced Features* menu; see Advanced Features Menu, page 43.

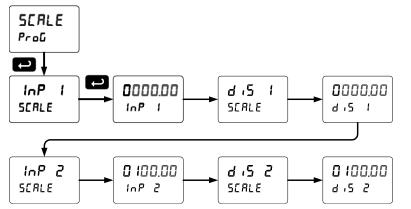
## Calibrating the Meter with Strain Gauge/Load Cell (ERL)

To scale the meter without a signal source, refer to Scaling the Meter (5£RLE), page 29.

The meter can be calibrated to display the process variable in engineering units by applying the appropriate input signal and following the calibration procedure.

The use of a calibrated signal source is strongly recommended to calibrate the meter.



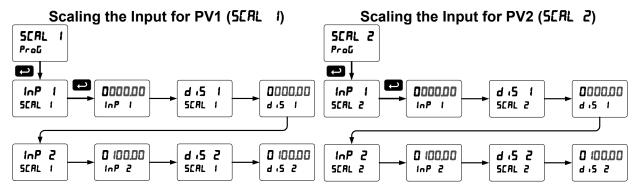

Warm up the meter for at least 15 minutes before performing calibration to ensure specified accuracy.

#### **Multi-Point Calibration & Scaling**

The meter is set up at the factory for 2-point linear calibration. The number of points for multi-point calibration/scaling is set up in the *Advanced Features* menu. Up to 32 linearization points may be selected for PV1 and up to 8 linearization points may be selected for PV2. See page 46 for details.

## Scaling the Meter (5ERLE)

The strain gauge input (e.g. 0-100 mV) can be scaled to display the process variable in engineering units. A signal source is not needed to scale the meter; simply program the inputs and corresponding display values.




For instructions on how to program numeric values see Setting Numeric Values, page 23.

#### **Dual-Scale Application**

The analog input can be displayed in two different scales, by enabling the dual-scale feature in the *Setup Input* menu, see page 25.

To enable the dual-scale feature you must select it in the Input selection menu.



#### Error Message (Error)

An error message indicates that the calibration or scaling process was not successful.

After the error message is displayed, the meter reverts to input 2 during calibration or scaling and to input 1 during internal calibration, allowing the appropriate input signal to be applied or programmed.

The error message might be caused by any of the following conditions:

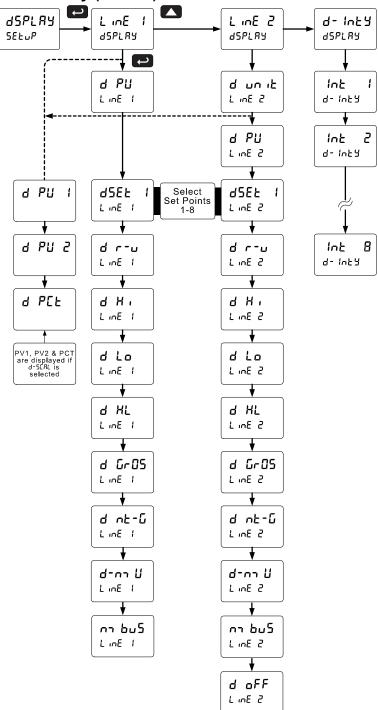
- 1. Input signal is not connected to the proper terminals or it is connected backwards.
- 2. Wrong signal selection in Setup menu.
- 3. Minimum input span requirements not maintained.
- 4. Input 1 signal inadvertently applied to calibrate input 2.

#### Minimum Input Span

The minimum input span is the minimum difference between input 1 and input 2 signals required to complete the calibration or scaling of the meter.

| Input Range    | Input 1 & Input 2 Span |  |  |
|----------------|------------------------|--|--|
| 15 mV          | 0.2 mV                 |  |  |
| 25 mV, 30 mV   | 0.4 mV                 |  |  |
| 150 mV         | 2.0 mV                 |  |  |
| 250 mV, 300 mV | 4.0 mV                 |  |  |

## Setting the Display Parameter & Intensity (d5PLRY)


Display line 1 (L inE I) can be programmed to display:

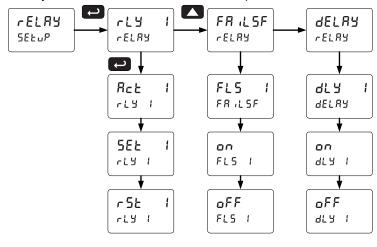
- 1. Process value 1 (PV1)
- 2. Process value 2 (PV2)
- 3. Percent of PV1 (PCt)
- 4. Relay set points
- 5. Toggle process value & units
- 6. Max & min values
- 7. Gross value
- 8. Toggle net & gross values
- 9. Input millivolts
- 10. Modbus input

Display line 2 (L in E 2) can be programmed to display:

- 1. Engineering units or custom legends
- 2. Process value 1 (PV1)
- 3. Process value 2 (PV2)
- 4. Percent of PV1 (PCt)
- 5. Relay set points
- 6. Toggle process value & units
- 7. Max & min values
- 8. Gross value
- 9. Toggle net & gross values
- 10. Input millivolts
- 11. Modbus input
- 12. Off (no display)

**Display Intensity:** The meter has eight display intensity levels to give the best performance under various lighting conditions. Select intensity 8 for outdoor applications. The default intensity setting is 8.




# Setting the Relay Operation (rELRY)

This menu is used to set up the operation of the relays.



During setup, the relays do not follow the input and they will remain in the state found prior to entering the Relay menu.

- 1. Relay action
  - a. Automatic reset only (non-latching)
  - b. Automatic + manual reset at any time (non-latching)
  - c. Latching (manual reset only)
  - d. Latching with Clear (manual reset only after alarm condition has cleared)
  - e. Pump alternation control (automatic reset only)
  - f. Sampling (the relay is activated for a user-specified time)
  - g. Off (relay state controlled by Interlock feature)
- 2. Set point
- 3. Reset point
- 4. Fail-safe operation
  - a. On (enabled)
  - b. Off (disabled)
- 5. Time delay
  - a. On delay (0-999.9 seconds)
  - b. Off delay (0-999.9 seconds)



Note: The setup of relays 2-8 follows the same pattern shown here for relay 1.

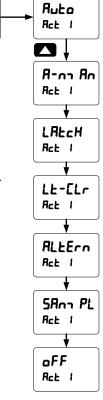
## PROVU PD6100 Strain Gauge, Load Cell, & mV Meter Instruction Manual

From

Relay 1

Menu

Rct 1


rLY 1

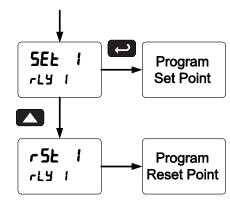
## **Setting the Relay Action**

Operation of the relays is programmed in the *Action* menu. The relays may be set up for any of the following modes of operation:

- Automatic reset (non-latching)
- 2. Automatic + manual reset at any time (non-latching)
- 3. Latching (manual reset only, at any time)
- 4. Latching with Clear (manual reset only after alarm condition has cleared)
- 5. Pump alternation control (automatic reset only)
- 6. Sampling (the relay is activated for a user-specified time)
- 7. Off (relay state controlled by Interlock feature)

The following graphic shows relay 1 action setup; relay 2-8 are set up in a similar fashion.




## **Programming Set and Reset Points**

High alarm indication: program set point above reset point.

Low alarm indication: program set point below reset point.

The deadband is determined by the difference between set and reset points. Minimum deadband is one display count. If the set and reset points are programmed with the same value, the relay will reset one count below the set point.

Note: Changes are not saved until the reset point has been accepted.

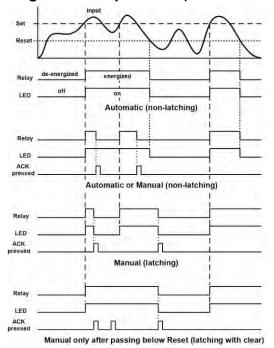


## **Setting Fail-Safe Operation**

In fail-safe mode of operation, the relay coil is energized when the process variable is within safe limits and the relay coil is de-energized when the alarm condition exists. The fail-safe operation is set independently for each relay. Select **on** to enable or select **oFF** to disable fail-safe operation.

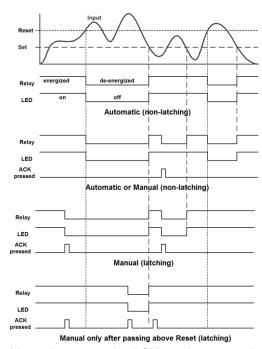
#### **Programming Time Delay**

The *On* and *Off* time delays may be programmed for each relay between 0 and 999.9 seconds. The relays will transfer only after the condition has been maintained for the corresponding time delay.


The *On* time delay is associated with the set point.

The Off time delay is associated with the reset point.

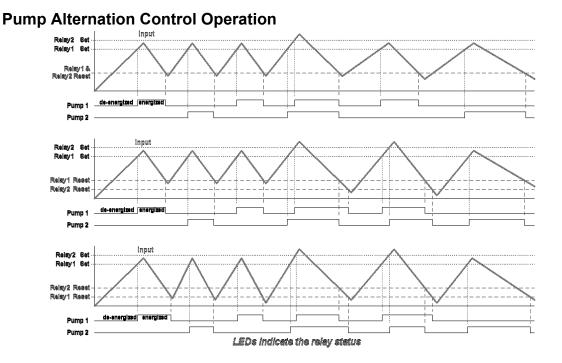
## **Relay and Alarm Operation Diagrams**


The following graphs illustrate the operation of the relays, status LEDs, and ACK button.

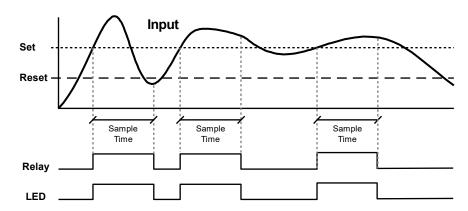
#### **High Alarm Operation (Set > Reset)**




For Manual reset mode, ACK can be pressed anytime to turn "off" relay. To detect a new alarm condition, the signal must go below the set point, and then go above it.


## Low Alarm Operation (Set < Reset)



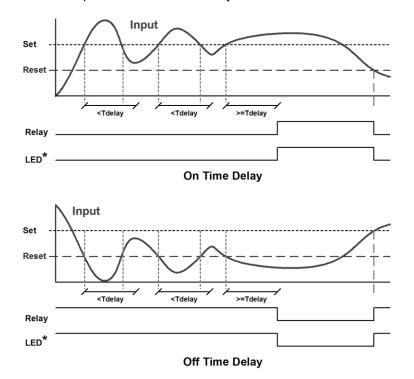

For Manual reset mode, ACK can be pressed anytime to turn "off" relay. For relay to turn back "on", signal must go above set point, and then go below it.



Note: Relay coil is energized in non-alarm condition. In case of power failure, relay will go to alarm state.



## **Relay Sampling Operation**




When the signal crosses the set point, the relay trips and the sample time starts. After the sample time has elapsed, the relay resets. The cycle repeats every time the set point is crossed, going up for high alarms and going down for low alarms.

The sample time can be programmed between 0.1 and 5999.9 seconds.

#### **Time Delay Operation**

The following graphs show the operation of the time delay function.



When the signal crosses the set point, the *On* time delay timer starts and the relay trips when the time delay has elapsed. If the signal drops below the set point (high alarm) before the time delay has elapsed, the *On* time delay timer resets and the relay does not change state. The same principle applies to the *Off* time delay.

Note: If "Automatic or Manual (R-nn Rn)" reset mode is selected, the LED follows the reset point and not the relay state when the relay is acknowledged.

# **Relay Operation Details**

#### Overview

The relay capabilities of the meter expand its usefulness beyond simple indication to provide users with alarm and control functions. These capabilities include front panel alarm status LEDs as well as either 2 or 4 optional internal relays and/or 4 external relays expansion module. Typical applications include high or low force, level, or pressure alarms, control applications such as simple on/off control, and relay alternation control for up to 8 pumps. There are four basic ways the relays can be used:

- 1. High or Low Alarms with Latching or Non-Latching Relays
- 2. Simple On/Off Control with 100% Adjustable Deadband
- 3. Sampling (Based on Time)
- 4. Alternation Control for up to 8 Pumps

## **Relays Auto Initialization**

When power is applied to the meter, the front panel LEDs and alarm relays will reflect the state of the input to the meter. The following table indicates how the alarm LEDs and relays will react on power-up based on the set and reset points.

| Alarm # | HI or LO<br>Alarm | Set<br>Point | Reset<br>Point | Power-Up<br>Reading | Relay<br>& LED |
|---------|-------------------|--------------|----------------|---------------------|----------------|
| 1       | HI                | 1000         | 500            | 499                 | Off            |
| 2       | LO                | 700          | 900            | 499                 | On             |
| 3       | LO                | 250          | 400            | 499                 | Off            |
| 4       | HI                | 450          | 200            | 499                 | On             |

## **Fail-Safe Operation**

The following table indicates how the relays behave based on the fail-safe selection for each relay:

| Fail-Safe | Non-Ala | rm State | Alarm St | tate   | Power Failure                |
|-----------|---------|----------|----------|--------|------------------------------|
| Selection | NO      | NC       | NO       | NC     |                              |
| Off       | Open    | Closed   | Closed   | Open   | Relays go to non-alarm state |
| On        | Closed  | Open     | Open     | Closed | Relays go to alarm state     |

Note: NO = Normally Open, NC = Normally Closed. This refers to the condition of the relay contacts when the power to the meter is off.

#### Front Panel LEDs

The LEDs on the front panel provide status indication for the following:

The meter is supplied with four alarm points that include front panel LEDs to indicate alarm conditions. This standard feature is particularly useful for alarm applications that require visual-only

| LED | Status  |
|-----|---------|
| 1   | Alarm 1 |
| 2   | Alarm 2 |
| 3   | Alarm 3 |
| 4   | Alarm 4 |

| LED | Status  |
|-----|---------|
| 5   | Alarm 5 |
| 6   | Alarm 6 |
| 7   | Alarm 7 |
| 8   | Alarm 8 |

indication. The LEDs are controlled by the set and reset points programmed by the user. When the display reaches a set point for a high or low alarm, the corresponding alarm LED will turn on. When the display returns to the reset point the LED will go off. The front panel LEDs respond differently for latching and non-latching relays.

For non-latching relays, the LED is always off during normal condition and always on during alarm condition, regardless of the state of the relay (e.g. Relay acknowledged after alarm condition).

For latching relays, the alarm LEDs reflect the status of the relays, regardless of the alarm condition. The following tables illustrate how the alarm LEDs function in relation to the relays and the acknowledge button (Default: F3 key assigned to ACK).

## **Latching and Non-Latching Relay Operation**

The relays can be set up for latching (manual reset) or non-latching (automatic reset) operation.

The On and Off terminology does not refer to the status of the relay's coil, which depends on the fail-safe mode selected.

| Relay terminology for following tables |                 |  |
|----------------------------------------|-----------------|--|
| Terminology Relay Condition            |                 |  |
| On                                     | Alarm (Tripped) |  |
| Off                                    | Normal (Reset)  |  |
| Ack                                    | Acknowledged    |  |



In latching relay mode, latched relays will reset (unlatch) when power is cycled.

## Non-Latching Relay (Auto)

In this application, the meter is set up for automatic reset (non-latching relay). Acknowledging the alarm while it is still present has no effect on either the LED or the relay. When the alarm finally goes away, the relay automatically resets and the LED also goes off.

| Automatic reset only |     |     |  |  |
|----------------------|-----|-----|--|--|
| Condition LED Relay  |     |     |  |  |
| Normal               | Off | Off |  |  |
| Alarm                | On  | On  |  |  |
| Ack (No effect)      | On  | On  |  |  |
| Normal               | Off | Off |  |  |

## Non-Latching Relay (A-n- An)

In this application, the meter is set up for automatic and manual reset at any time (non-latching relay). The LED and the relay automatically reset when the meter returns to the normal condition.

The next time an alarm occurs, the operator acknowledges the alarm manually while the alarm condition still exists. This causes the relay to reset, but the LED stays on until the meter returns to the normal condition.

| Automatic + manual reset at any time |     |     |  |  |  |
|--------------------------------------|-----|-----|--|--|--|
| Condition LED Relay                  |     |     |  |  |  |
| Normal                               | Off | Off |  |  |  |
| Alarm                                | On  | On  |  |  |  |
| Normal                               | Off | Off |  |  |  |
| Next Alarm                           | On  | On  |  |  |  |
| Ack                                  | On  | Off |  |  |  |
| Normal                               | Off | Off |  |  |  |

# Latching Relay (LALcH)

In this application, the meter is set up for manual reset at any time. Acknowledging the alarm even if the alarm condition is still present resets the relay and turns off the LED.

| Manual reset any time |                   |  |  |  |
|-----------------------|-------------------|--|--|--|
| Condition LED Relay   |                   |  |  |  |
| Off                   | Off               |  |  |  |
| On                    | On                |  |  |  |
| Off                   | Off               |  |  |  |
|                       | <b>LED</b><br>Off |  |  |  |

# Latching Relay (LE-[Lr)

In this application, the meter is set up for manual reset only after the signal passes the reset point (alarm condition has cleared). Acknowledging the alarm while it is still present has no effect on either the LED or the relay. When the alarm is acknowledged after it returns to the normal state, the LED and the relay go off. Notice that the LED remains on, even after the meter returns to the normal condition. This is because, for latching relays, the alarm LED reflects the status of the relay, regardless of the alarm condition.

| Manual reset only after alarm condition has cleared |     |     |  |  |  |
|-----------------------------------------------------|-----|-----|--|--|--|
| Condition LED Relay                                 |     |     |  |  |  |
| Normal                                              | Off | Off |  |  |  |
| Alarm On On                                         |     |     |  |  |  |
| Ack (No effect) On On                               |     |     |  |  |  |
| Normal                                              | On  | On  |  |  |  |
| Ack Off Off                                         |     |     |  |  |  |

#### **Acknowledging Relays**

There are two ways to acknowledge relays programmed for manual reset:

- 1. Via the programmable front panel function keys F1-F3 (Assignable via the *User* menu inside the *Advanced Features* menu.
- 2. Remotely via a normally open pushbutton wired across one of the digital inputs and the +5 V terminals on the digital I/O modules, or using the F4 digital input (factory default setting), which is triggered with a contact closure to COM, or with an active low signal (see page 17).

When the ACK button or the assigned digital input is closed, all relays programmed for manual reset are acknowledged.

Note: The function key and digital input assignment is changed in the **Advanced – User** menu.

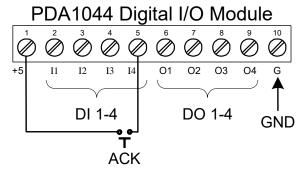



Figure 23. Acknowledge Relays with Digital Input

#### Pump Alternation Control Applications (RLEErn)

For pump control applications where two or more similar pumps are used to control the level of a tank, it is desirable to have all the pumps operate alternately. This prevents excessive wear and overheating of one pump over the lack of use of the other pumps.

Up to 8 relays can be set up to alternate every time an on/off pump cycle is completed. The set points and reset points can be programmed, so that the first pump on is the first pump off.

#### Application #1: Pump Alternation Using Relays 1 & 2

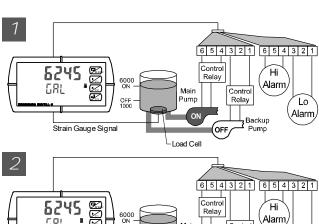
- 1. Relays 1 and 2 are set up for pump alternation.
- 2. Relays 3 and 4 are set up for low and high alarm indication.

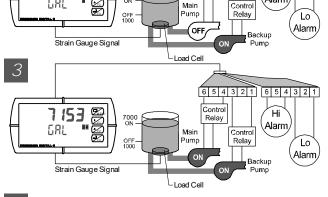
|                | Set and Reset Point Programming |                  |                     |  |
|----------------|---------------------------------|------------------|---------------------|--|
| Relay          | Set Point                       | Function         |                     |  |
| 1              | 30.000                          | 10.000           | Controls pump #1    |  |
| 2 35.000 5.000 |                                 | Controls pump #2 |                     |  |
| 3              | 4.000                           | 9.000            | Controls low alarm  |  |
| 4              | 40.000                          | 29.000           | Controls high alarm |  |

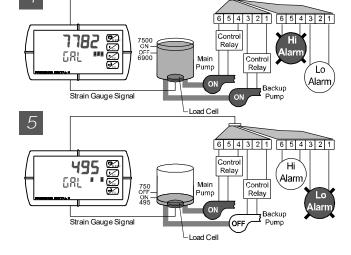
#### **Pump Alternation Operation**

- 1. Pump #1 turns on when level reaches 30.000, when level drops below 10.000 pump #1 turns off.
- 2. The next time level reaches 30.000, pump #2 turns on, when level drops below 10.000 pump #2 turns off.
- 3. If the level doesn't reach 35.000 pump #1 and pump #2 will be operating alternately.
- 4. If pump #1 cannot keep the level below 35.000 pump #2 will turn on at 35.000, then as the level drops to 10.000 pump #1 turns off, pump #2 is still running and shuts off below 5.000.
- 5. Notice that with the set and reset points of pump #2 outside the range of pump #1, the first pump on is the first pump to go off. This is true for up to 8 alternating pumps, if setup accordingly.
- 6. Relay #3 will go into alarm if the level drops below 4.000 and relay #4 will go into alarm if the level exceeds 40.000.
- 7. Adding the 4 external relays expansion module allows using the 4 SPDT internal relays for pump alternation and the 4 SPST external relays for high, high-high, low, and low-low alarm indication.

#### Application #2: Pump Alternation Using Relays 3 & 4


- 1. Relays 1 and 2 are set up for low and high alarm indication.
- 2. Relays 3 and 4 are set up for pump alternation.

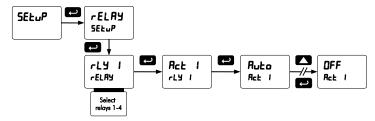

| Set and Reset Point Programming |      |      |                      |
|---------------------------------|------|------|----------------------|
| Relay Set Point Reset Point     |      |      | Function             |
| 1                               | 495  | 750  | Controls low alarm   |
| 2                               | 7500 | 6900 | Controls high alarm  |
| 3                               | 7000 | 900  | Controls backup pump |
| 4                               | 6000 | 1000 | Controls main pump   |


The following graphics provide a visual representation of a typical pump alternation application with high and low alarm monitoring.

- 1. Relay #4 turns the main pump on at 6000 gallons and turns it off at 1000 gallons.
- With the Pump Alternation feature activated, the next time the level reaches 6000 gallons, relay #3 transfers and starts the backup pump.
- 3. If the backup pump is not able to keep up, and the level reaches 7000 gallons, relay #4 transfers and starts the main pump as well.
- 4. Relay #2 trips the High Level Alarm at 7500 gallons and resets at 6900 gallons.

5. Relay #1 trips the Low Level Alarm at 495 gallons and resets at 750 gallons.

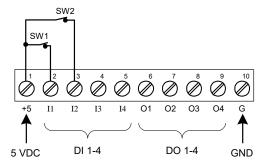







## Setting Up the Interlock Relay (Force On) Feature

Relays 1-4 can be set up as interlock relays. To set up the relays for the interlock feature:


1. Access the Setup – Relay – Action menu and set the action to off.

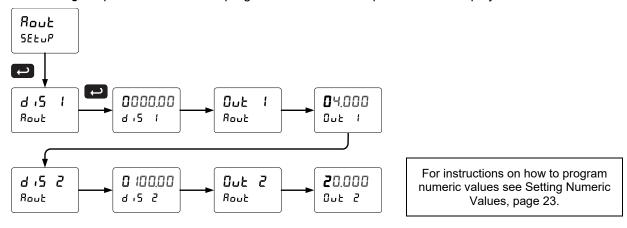


2. In the Advanced features – *User* menu program any of the digital inputs to *Force On* any of the internal relays (1-4).



3. Connect a switch or dry contact between the +5V terminal and the corresponding digital input (dl-1 to dl-4) terminal.




#### **Interlock Relay Operation Example**

Relays 1 & 2 are configured to energize (their front panel LEDs are off) when SW1 & SW2 switches (above) are closed. If the contacts to these digital inputs are opened, the corresponding front panel LEDs flash indicating this condition. The processes being controlled by the interlock relay will stop, and will restart only after the interlock relay is re-activated by the digital inputs (switches).

# Scaling the 4-20 mA Analog Output (Rout)

The 4-20 mA analog output can be scaled to provide a 4-20 mA signal for any display range selected. No equipment is needed to scale the analog output; simply program the display values to the corresponding mA output signal.

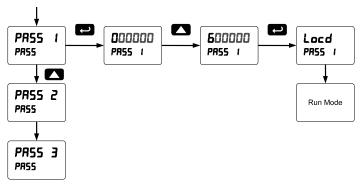
The Analog Output menu is used to program the 4-20 mA output based on display values.



# Setting Up the Password (PR55)

The *Password* menu is used for programming three levels of security to prevent unauthorized changes to the programmed parameter settings.

Pass 1: Allows use of function keys and digital inputs

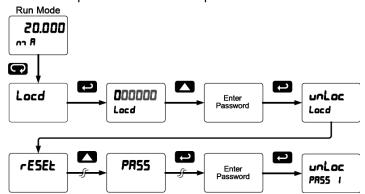

Pass 2: Allows use of function keys, digital inputs and editing set/reset points

Pass 3: Restricts all programming, function keys, and digital inputs.

## **Protecting or Locking the Meter**

Enter the Password menu and program a six-digit password.

For instructions on how to program numeric values see Setting Numeric Values, page 23.




#### Making Changes to a Password Protected Meter

If the meter is password protected, the meter will display the message Locd (Locked) when the Menu button is pressed. Press the Enter button while the message is being displayed and enter the correct password to gain access to the menu. After exiting the programming mode, the meter returns to its password protected condition.

## **Disabling Password Protection**

To disable the password protection, access the *Password* menu and enter the correct password twice, as shown below. The meter is now unprotected until a new password is entered.



If the correct six-digit password is entered, the meter displays the message unlocked) and the protection is disabled until a new password is programmed.

If the password entered is incorrect, the meter displays the message Locd (Locked) for about two seconds, and then it returns to Run Mode. To try again, press Enter while the *Locked* message is displayed.

#### Did you forget the password?

The password may be disabled by entering a master password once. If you are authorized to make changes, enter the master password 508655 to unlock the meter.

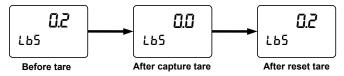
# Reset Menu (rE5EŁ)

The *Reset* menu is used to reset the tare (r5 & Er) and the maximum or minimum readings (peak or valley) reached by the process; max & min may be reset at the same time by selecting "reset high & low" (r5 & HL).

Note: Resetting the tare resets the max & min readings.

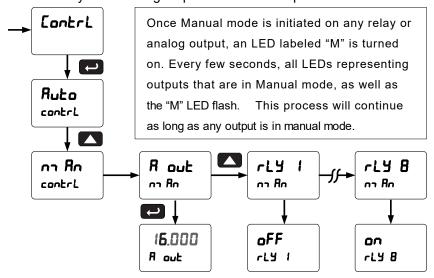
# Tare Menu (LACE)

The *Tare* menu is used to select the tare mode. There are three modes of operation: *Capture Tare*, *Programmable Tare*, and *Off*.


**Capture Tare:** Pressing the Tare key zeroes the display and the "T" indicator flashes indicating that tare is applied to the reading (e.g. Net weight).

**Programmable Tare:** Program a known value to be subtracted from the display value to obtain the net value. Pressing Reset tare clears the tare value to zero. Programmable Tare will not tare negative PVs. Use Capture Tare for negative PVs.

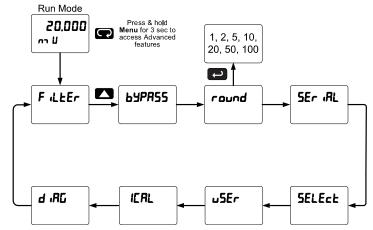
Off: Tare function is disabled and pressing Tare key has no effect.


## Tare Functionality (ERCE)

The tare function zeroes out the display. In the case of scale weight, tare is used to eliminate container weight and provide net weight readings.



# Control Menu (Contrl)


The *Control* menu is used to control the 4-20 mA analog output and the relays manually, ignoring the input. Each relay and analog output can be programmed independently for manual control. Selecting automatic control sets all relays and analog output for automatic operation.



## **Advanced Features Menu**

To simplify the setup process, functions not needed for most applications are located in the *Advanced Features* menu.

Press and hold the Menu button for three seconds to access the advanced features of the meter.



## **Advanced Features Menu & Display Messages**

The following table shows the functions and messages of the *Advanced Features* menu in the order they appear in the menu.

| Display       | Parameter                 | Action/Setting                                                                    |
|---------------|---------------------------|-----------------------------------------------------------------------------------|
| Filter        | Filter                    | Set noise filter value                                                            |
| <b>645855</b> | Bypass                    | Set filter bypass value                                                           |
| round         | Rounding                  | Select rounding value                                                             |
| SEr iRL       | Serial                    | Set serial communication parameters                                               |
| SLRUE 18      | Slave ID                  | Set slave ID or meter address                                                     |
| გგიძ          | Baud rate                 | Select baud rate                                                                  |
| fr 9FA        | Transmit<br>delay         | Set transmit delay for serial communication                                       |
| PRr 129       | Parity                    | Select parity<br>Even, Odd, or None with 1<br>or 2 stop bits                      |
| £-83F         | Time byte                 | Set byte-to-byte timeout                                                          |
| SELEct        | Select                    | Enter the Select menu (function, cutoff, out)                                     |
| Functn        | Signal input conditioning | Linear, select number of points                                                   |
| L INERC       | Linear                    | Set meter for linear function<br>and select number of<br>linearization points     |
| Pu (          | PV1                       | Select PV1 number of linearization points                                         |
| Pu 2          | PV2                       | Select PV2 number of linearization points                                         |
| no PES        | Number of points          | Set PV1 for 2 to 32-point linearization<br>Set PV2 for 2 to 8-point linearization |

| Display | Parameter                           | Action/Setting                                                                       |
|---------|-------------------------------------|--------------------------------------------------------------------------------------|
| SCALE   | Scale                               | Scaling parameter                                                                    |
| SERL 1  | Scale 1                             | Scaling parameter 1                                                                  |
| SERL 2  | Scale 2                             | Scaling parameter 2                                                                  |
| CutoFF  | Cutoff                              | Set low-flow cutoff                                                                  |
| Ruto O  | Auto Zero                           | Enter the Auto Zero function (on/off)                                                |
| RoutPr  | Analog<br>output<br>programmin<br>g | Program analog output parameters                                                     |
| SourcE  | Source                              | Select source for the 4-20 mA output                                                 |
| 0-1806  | Overrange                           | Program mA output for display overrange                                              |
| n-L8vC  | Underrange                          | Program mA output for display underrange                                             |
| n 18X   | Maximum                             | Program maximum mA output allowed                                                    |
| חורת    | Minimum                             | Program minimum mA output allowed                                                    |
| CAL 1P  | Calibrate                           | Calibrate 4-20 mA output (internal reference source used for scaling the output)     |
| Y ለ ገጸ  | 4 mA output                         | Enter mA output value read<br>by milliamp meter with at<br>least 0.001 mA resolution |
| 20 nn8  | 20 mA<br>output                     | Enter mA output value read<br>by milliamp meter with at<br>least 0.001 mA resolution |

## PROVU PD6100 Strain Gauge, Load Cell, & mV Meter Instruction Manual

| Display | Parameter                         | Action/Setting                                                                         |
|---------|-----------------------------------|----------------------------------------------------------------------------------------|
| uSEr    | User I/O                          | Assign function keys and digital I/O                                                   |
| FI      | F1 function<br>key                | Assign F1 function key (*F1/F2/F3)                                                     |
| FY      | F4 function                       | Assign F4 function (digital input)                                                     |
| 411     | Digital input<br>1                | Assign digital input 1 – 8, if expansion modules are connected                         |
| 40 1    | Digital<br>output 1               | Assign digital output 1 – 8, if expansion modules are connected                        |
| IERL    | Internal<br>source<br>calibration | Enter internal source calibration (used for scaling the meter without a signal source) |
| 150.70  | 15 mV<br>calibration              | Calibrate 15 mV input range (internal reference source used for scaling the input)     |
| 20070   | 20 mV<br>calibration              | Calibrate 30 mV input range (internal reference source used for scaling the input)     |

| Display | Parameter             | Action/Setting                                                                      |
|---------|-----------------------|-------------------------------------------------------------------------------------|
| 100010  | 100 mV<br>calibration | Calibrate 150 mV input range (internal reference source used for scaling the input) |
| 200010  | 200 mV<br>calibration | Calibrate 300 mV input range (internal reference source used for scaling the input) |
| Stroff  | Strain offset         | Calibrate the offset of the input circuit                                           |
| u Lo    | mV low                | Calibrate low mV input (e.g. 0 mV)                                                  |
| υ X ι   | mV high               | Calibrate high mV input (e.g. 100 mV)                                               |
| 9 '82   | Diagnostics           | Display test and information                                                        |
| FE9 F   | LED test              | Test all LEDs                                                                       |
| InFo    | Information           | Display software and S/N information                                                |
| ErRSE   | Erase                 | Erase MeterView Pro<br>software stored in meter's<br>memory                         |

## Noise Filter (F 'LLE')

The noise filter is available for unusually noisy signals that cause an unstable process variable display. The noise filter averages the input signal over a certain period. The filter level determines the length of time over which the signal is averaged. The filter level can be set between 2 and 199. The higher the filter level, the longer the averaging time and so the longer it takes the display to settle to its final value. Setting the filter level to zero disables the filter function.

## Noise Filter Bypass (64PR55)

The noise filter bypass changes the behavior of the meter so that small variations in the signal are filtered out but large abrupt changes in the input signal are displayed immediately. The bypass value determines the minimum amount of signal change to be displayed immediately. All signal changes smaller than the bypass value are filtered or averaged by the meter. The noise filter bypass may be set between 0.1 and 99.9% of full scale.

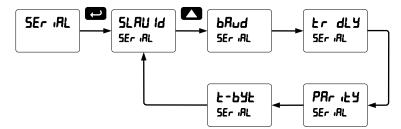
## Rounding Feature (רסייחל)

The rounding feature is used to give the user a steadier display with fluctuating signals. Rounding is used in addition to the filter function.

Rounding causes the display to round to the nearest value according to the rounding selected. This setting affects the last two digits, regardless of decimal point position. See examples below:

| Rounding<br>Selection | Actual<br>Value | Display<br>Value | Actual<br>Value | Display<br>Value |
|-----------------------|-----------------|------------------|-----------------|------------------|
| 1                     | 12.022          | 12.022           | 12.023          | 12.023           |
| 5                     | 12.022          | 12.020           | 12.023          | 12.025           |
| 10                    | 12.024          | 12.020           | 12.025          | 12.030           |

## Modbus RTU Serial Communications (5Er .RL)

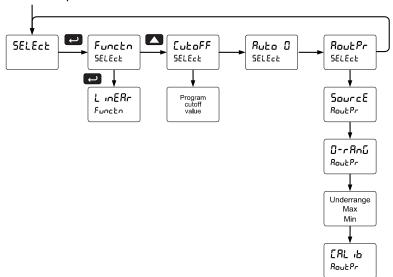

The meter is equipped with serial communications capability as a standard feature using Modbus RTU Serial Communication Protocol.

The meter may be connected to a PC for initial configuration via the onboard micro USB connection. For ongoing digital communications with a computer or other data terminal equipment, an RS-232, or RS-485 option is required; see *Ordering Information* on page 5 for details.



Do not connect any equipment other than Precision Digital's expansion modules, cables, or meters to the RJ45 M-LINK connector. Otherwise damage will occur to the equipment and the meter.

Note: More detailed instructions are provided with each optional serial communications adapter. Note: Refer to the ProVu® Modbus Register Tables located at www.predig.com for details.




When using more than one meter in a multi-drop mode, each meter must be provided with its own unique address. The meter address (Slave ID) may be programmed between 1 and 247. The transmit delay may be set between 0 and 199 ms. The parity can be set to even, odd, or none with 1 or 2 stop bits.

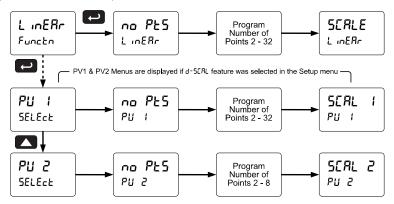
## Select Menu (5ELEct)

The *Select* menu is used to select the signal input conditioner applied to the input (linear), low cutoff, Auto-zero, and analog output programming.

The multi-point linearization is part of the linear function selection.



# Signal Input Conditioning (Functor)


The *Function* menu is used to select the signal input conditioner applied to the input: linear. The multipoint linearization is part of the linear function selection.

Meters are set up at the factory for linear function with 2-point linearization. The linear function provides a display that is linear with respect to the input signal.

#### Multi-Point Linearization (L InERr)

Meters are set up at the factory for linear function with 2-point linearization. Up to 32 linearization points can be selected for PV under the linear function. The multi-point linearization can be used to linearize the display for non-linear signals such as those from level Sensors used to measure volume in odd-shaped tanks or to convert level to flow using weirs and flumes with complex exponent.

If the dual-scale Level feature has been selected, the menus for PV1 & PV2 are enabled. PV2 can be programmed with up to 8 linearization points.



#### Auto-Zero (Ruto 0)

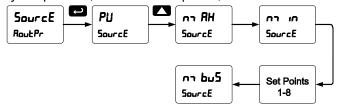
Auto-zero corrects for drift that can occur over time that causes the input signal to slowly change. The meter will continue to read zero despite slow and small changes to the input signal. The auto-zero value represents the percent of full scale drift that the meter will correct.

Under normal circumstances, when the signal increases quickly, by an amount greater than the auto-zero percent of full scale, the value will not be adjusted for. Slow signal changes that occur over time at increments less than the auto-zero value, will not register on the meter (example: dust on a load cell or sensor drift over time).

## Low Cutoff ([uboFF)

The low cutoff feature allows the meter to be programmed so that the often-unsteady output from a differential pressure Sensor, at low flow rates, always displays zero on the meter.

The cutoff value may be programmed from 0 to 999999. The meter will display zero below the cutoff value. Programming the cutoff value to zero disables the cutoff feature.


# Analog Output Programming (RoutPr)

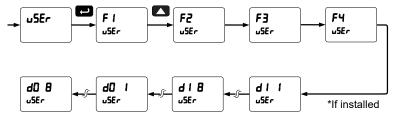
The *Analog Output Programming* menu is used to program the behavior of the 4-20 mA output. The following parameters and functions are programmed in this menu:

- 1. Source: Source for generating the 4-20 mA output (e.g. PV)
- 2. Overrange: Analog output value with display in overrange condition
- 3. Underrange: Analog output value with display in underrange condition
- 4. Max: Maximum analog output value allowed regardless of input
- 5. Min: Minimum analog output value allowed regardless of input
- 6. Calibrate: Calibrate the internal 4-20 mA source reference used to scale the 4-20 mA output

#### **Analog Output Source**

The source for generating the 4-20 mA output may be assigned to the process variable, maximum or minimum value reached by the process, one of the set points, or the Modbus PV input.




## **Analog Output Calibration**

To perform the analog output calibration, it is recommended to use a milliamp meter with a resolution of at least 0.1  $\mu$ A to measure the output current. The values saved internally during this procedure are used for scaling the 4-20 mA output in the *Setup* menu.

#### Programmable Function Keys User Menu (25Er)

The *User* menu allows the user to assign the front panel function keys F1, F2, and F3, the digital input F4 (a digital input located on the signal input connector), and up to eight additional digital inputs to access most of the menus or to activate certain functions immediately (e.g. reset max & min, hold relay states, etc.). This allows the meter to be greatly customized for use in specialized applications.

Up to eight digital outputs can be assigned to a number of actions and functions executed by the meter (i.e. alarms, relay acknowledgement, reset max, min, or max & min, tare, and reset tare). The digital outputs can be used to trigger external alarms or lights to indicate these specific events.



#### Function Keys & Digital I/O Available Settings

Refer to the following table for descriptions of each available function key or digital I/O setting.

| Display | Description                                                                                                                                                       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rSE XI  | Reset the stored maximum display value                                                                                                                            |
| r5t Lo  | Reset the stored minimum display value                                                                                                                            |
| ר5£ XL  | Reset the stored maximum & minimum display values                                                                                                                 |
| FBLE    | Capture tare and zero the display                                                                                                                                 |
| r5b br  | Reset captured tare and resume normal operation                                                                                                                   |
| rELRY   | Directly access the relay menu                                                                                                                                    |
| 581 1*  | Directly access the set point menu for relay 1 (*through 8)                                                                                                       |
| LFA 9   | Disable all relays until a button assigned to enable relays (rLY E) is pressed                                                                                    |
| rly E   | Enable all relays to function as they have been programmed                                                                                                        |
| O Xold  | Hold current relay states as they are until a button assigned to enable relays (rLY E) is pressed                                                                 |
| d Xofq  | Hold the current display value momentarily while the function key or digital input is active. The process value will continue to be calculated in the background. |
| LalXi   | Display maximum display value on line 1                                                                                                                           |

| Display | Description                                                                                                                                                                                                  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ln I Lo | Display minimum display value on line 1                                                                                                                                                                      |
| Ln I XL | Display maximum & minimum display values on line 1                                                                                                                                                           |
| ריקייה  | Display the mV input on line 2                                                                                                                                                                               |
| Fu5 X:  | Display maximum display value on line 2                                                                                                                                                                      |
| Lu∑ Lo  | Display minimum display value on line 2                                                                                                                                                                      |
| FUS XF  | Display maximum & minimum display values on line 2                                                                                                                                                           |
| 2Ero    | Zero the display (this is different from <i>capture tare</i> because it cannot be reset)                                                                                                                     |
| F 0n 1* | Force relay 1 (*through 4) into the on state. This function is used in conjunction with a digital input expansion module to achieve interlock functionality. See page 40 for details about interlock relays. |
| [ontrl  | Directly access the control menu                                                                                                                                                                             |
| d iSBPF | Disable the selected function key or digital I/O                                                                                                                                                             |
| RcH     | Acknowledge all active relays that are in a manual operation mode such as auto-manual or latching                                                                                                            |
| r858b   | Directly access the reset menu                                                                                                                                                                               |

| Display | Description                                                         |
|---------|---------------------------------------------------------------------|
| กายีกม  | Mimic the menu button functionality (digital inputs only)           |
| r 10XF  | Mimic the right arrow/F1 button functionality (digital inputs only) |
| υp      | Mimic the up arrow/F2 button functionality (digital inputs only)    |

| Display | Description                                                                                  |
|---------|----------------------------------------------------------------------------------------------|
| EntEr   | Mimic the enter/F3 button functionality (digital inputs only)                                |
| ALAN 1* | Provide indication when alarm 1<br>(*through 8) has been triggered<br>(digital outputs only) |

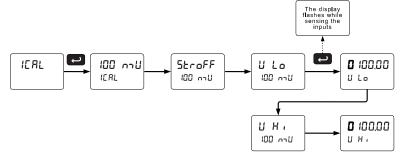
## Internal Source Calibration ( IERL)

The meter is factory calibrated prior to shipment to read in millivolts. The calibration equipment is certified to NIST standards. There is no need to perform an internal calibration for new meter.

The internal source allows the user to scale the meter without applying a signal.

The use of calibrated signal sources is necessary to perform the internal source calibration of the meter. Check calibration of the meter at least every 12 months. Each range must be recalibrated separately.

#### Notes:


- 1. mV input: If meter is in operation and it is intended to accept only one input range (e.g. 0-30 mV), recalibration of other ranges is not necessary.
- 2. Strain gauge: If the meter is intended to accept a strain gauge bridge input, it is recommended to use the CAL function with ratiometric compensation turned on.
- 3. Allow the meter to warm up for at least 15 minutes before performing the internal source calibration procedure.

The Internal calibration menu is part of the Advanced Features menu.

- 1. Press and hold the Menu button for three seconds to access the advanced features of the meter.
- 2. Press the Up arrow button to scroll to the Internal calibration menu ( IERL) and press Enter.
- 3. The meter displays the first input range ( ½ רח ט), press the Up arrow to select any other range (e.g. ע בים טו. Press Enter to start the calibration process.

#### Example of Internal Calibration for 100 mV input range:

- 4. The meter displays the message "5½r oFF" (strain offset), short the SG+, SG- terminals and press Enter. The *low* input message is displayed (" La). Apply the low input signal (e.g. 0.00 mV) and press Enter. The display flashes for a moment while the meter is accepting the low input signal.
- 5. After the display stops flashing, a number is displayed with the leftmost digit brighter than the rest. The bright digit is the active digit that can be changed by pressing the Up arrow button. Press the Right arrow button to move to the next digit.
- 6. Set the display value to correspond to the input signal being calibrated; typically 0.00 mV.
- 7. The display moves to the *high* input calibration ( $U H \iota$ ). Apply the high input signal and press Enter.
- 8. Set the display for the high input calibration, in the same way as it was set for the low input calibration, typically 100.00 mV.



The graphic above shows the calibration of the 100 mV input range. The other input ranges are calibrated in a similar way.

#### PROVU PD6100 Strain Gauge, Load Cell, & mV Meter Instruction Manual

#### Tips:

- Low and high input signals can be any valid values within the range of the meter.
- Observe minimum input span requirements between input 1 and input 2.
- Low input should be less than high input signal.

## Error Message (Error)

An error message indicates that the calibration or scaling process was not successful.

After the error message is displayed, the meter reverts to input 2 during calibration or scaling and to input 1 during internal calibration, allowing the appropriate input signal to be applied or programmed.

The error message might be caused by any of the following conditions:

- 1. Input signal is not connected to the proper terminals, or it is connected backwards.
- 2. Wrong signal selection in Setup menu.
- 3. Minimum input span requirements not maintained.

#### **Minimum Input Span**

The minimum input span is the minimum difference between input 1 and input 2 signals required to complete the calibration or scaling of the meter.

| Input Range    | Input 1 & Input 2 Span |
|----------------|------------------------|
| 15 mV          | 0.2 mV                 |
| 25 mV, 30 mV   | 0.4 mV                 |
| 150 mV         | 2.0 mV                 |
| 250 mV, 300 mV | 4.0 mV                 |

# **Meter Operation**

The meter is capable of accepting any signal from -250 to 250 mV in bipolar mode, or 0 to 300 mV in unipolar mode, and displaying these signals in engineering units from -99999 to 999999 (e.g. a 0-100 mV signal could be displayed as 0 to 50000). The dual-line display can be customized by the user to operate in such a way as to satisfy a specific application. Typically, display line 1 is used for the process variable; while line 2 is used for engineering units, custom legend, or set point indication.

The input signal can be scaled to display the process in two different scales; for example, line 1 could indicate weight in pounds and line 2 could indicate percent of maximum weight capacity. The meter can also be set up to display the analog input on line 1 and the Modbus input on line 2. The relays and analog output can be programmed to operate from the Modbus PV input if the Modbus input has been assigned to display line 1.

During operation, the meter can be either tared or zeroed. The tare feature is useful for momentarily zeroing out of the display, in the case where there is additional weight than what is intended to be measured (e.g. a bucket on the scale is being filled with material). The meter will display a T to indicate that the display has been tared and taring is resettable via the reset tare operation. The zero feature is useful for permanent zeroing of the meter, in the case where there has been drift in the strain gauge output over time. The zero feature will zero out the display without indication or the ability to reset.

**Front Panel Buttons Operation** 

| Button     | Description                                                                                         |
|------------|-----------------------------------------------------------------------------------------------------|
| MENU       | Press to enter or exit <i>Programming Mode</i> .                                                    |
| F1<br>ZERO | Press to zero the meter or other parameter/ function assigned through the <i>User</i> menu.         |
| F2<br>RST  | Press to reset tare or other parameter/function assigned through the <i>User</i> menu.              |
| (→ F3 TARE | Press to tare the display value or other parameters/function assigned through the <i>User</i> menu. |

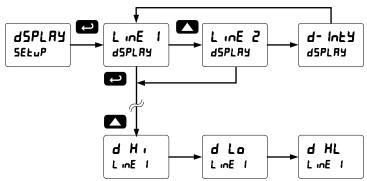
# **Function Keys Operation**

During operation, the programmable function keys operate according to the way they have been programmed in the *Advanced Features – User* menu.

The table above shows the factory default settings for F1, F2, and F3.

# Maximum/Minimum Readings

The max & min readings (peak & valley) reached by the process can be displayed either continuously or momentary:


- 1. Display briefly by assigning to the F1-F3 function keys or to the digital inputs in the *User* menu. Any of the F1-F3 function keys (buttons) and the digital inputs can be programmed to reset the max & min readings.
- 2. Display continuously by assigning either display to max/min through the Display menu.

#### To display max reading using function key:

- 1. Press user assigned function key/digital input to display maximum reading since the last reset/power-up.
- 2. To reset max/min, press the Menu button, then the Up arrow/F2 button until the Reset (£5£Ł) menu is displayed.
- 3. Press the Up arrow/F2 button to select reset high (r5t H1), reset low (r5t La), or reset high and low (r5t HL) is displayed and then press the Enter/F3 button. The max and/or min displays are reset to actual values.
- 4. Press Menu to exit max/min display reading.

#### To display max/min readings continuously:

Assign either display to Max (d H i), Min (d La), or toggle between Max and Min (d HL) every 10 seconds.



# **Troubleshooting**

Due to the many features and functions of the meter, it's possible that the setup of the meter does not agree with what an operator expects to see. If the meter is not working as expected, refer to the *Diagnostics* menu and consult the recommendations described below.

# Diagnostics Menu (d ・Rじ)

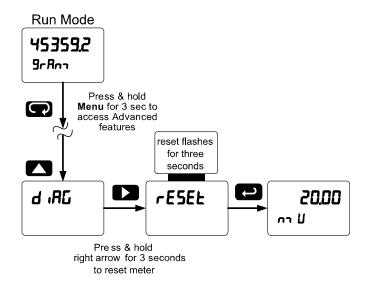
The *Diagnostics* menu is located in the *Advanced Features* menu, to access *Diagnostics* menu see Advanced Features Menu, page 43.

This menu allows the user to test the functionality of all the meter LEDs, check the meter's software and version information, and erase the MeterView Pro software installation files from the meter. Press the Enter button to view the settings and the Menu button to exit at any time.

For a description of the diagnostic messages, see Advanced Features Menu & Display Messages, page 43.

## **Determining Software Version**

To determine the software version of a meter:


- 1. Go to the *Diagnostics* menu (d AL) and press Enter button.
- 2. Press Up arrow button and scroll to Information menu ( InFa).
- 3. Press Enter to access the software number (5FŁ) and version (UEr) information. Write down the information as it is displayed. Continue pressing Enter until all the information is displayed.
- 4. The meter returns to Run Mode after displaying all the settings.

## **Reset Meter to Factory Defaults**

When the parameters have been changed in a way that is difficult to determine what's happening, it might be better to start the setup process from the factory defaults.

#### Instructions to load factory defaults:

- 1. Enter the Advanced Features menu. See Advanced Features Menu, page 43.
- 2. Press Up arrow to go to Diagnostics menu
- 3. Press and hold Right arrow for three seconds, press
  Enter when display flashes rESEL.
  Note: If Enter is not pressed within three seconds, the display returns to the *Diagnostics* menu.
- 4. The meter goes through an initialization sequence (similar as on power-up), and loads the factory default settings.



# **Factory Defaults & User Settings**

The following table shows the factory setting for most of the programmable parameters on the meter.

| Parameter           | Display | Default Setting        |
|---------------------|---------|------------------------|
| Input type          | PoLAr   | Polar = Uni            |
| Input Range         | rRnGE   | Range = 30mV           |
| Ratiometic          | rRt 10  | Ratio = Yes            |
| Dual-scale          | d-SERL  | No (Single scale)      |
| Filter              | FiLEEr  | 70                     |
| Bypass              | 64PR55  | 0.2                    |
| Rounding            | round   | 1                      |
| Function            | Functo  | Linear                 |
| Number of points    | no PES  | 2                      |
| Programming         | Proū    | Scale                  |
| Input 1             | inP i   | 0.00 mV                |
| Display 1           | d 15 1  | 0.00                   |
| Input 2             | inP 2   | 100.00 mV              |
| Display 2           | d 15 2  | 100.00                 |
| Decimal point       | ddd.ddd | 3 places               |
| Cutoff value        | CutoFF  | 0.000 (disabled)       |
| Auto-zero           | Auto 0  | 0.05% of Full<br>Scale |
| Display assignment  | dSPLRY  |                        |
| Line 1              | L inE 1 | PV: Process variable   |
| Line 2              | LinE 2  | Eng units: mV          |
| Display intensity   | d- Inty | 8                      |
| Relay 1 action      | Act 1   | Automatic              |
| Relay 1 set point   | 5EŁ /   | 10.00                  |
| Relay 1 reset point | rSt 1   | 5.00                   |
| Relay 2 action      | Act 2   | Automatic              |
| Relay 2 set point   | 5EŁ 2   | 20.00                  |
| Relay 2 reset point | rSt 2   | 15.00                  |
| Relay 3 action      | Act 3   | Automatic              |
| Relay 3 set point   | 5EŁ 3   | 30.00                  |
| Relay 3 reset point | rSt 3   | 25.00                  |
| Relay 4 action      | Act 4   | Automatic              |
| Relay 4 set point   | SEŁ Y   | 40.00                  |
| Relay 4 reset point | rSt 4   | 35.00                  |

| Parameter             | Display | Default Setting    |
|-----------------------|---------|--------------------|
| Fail-safe relay 1     | FLS 1   | Off                |
| Fail-safe relay 2     | FL5 2   | Off                |
| Fail-safe relay 3     | FLS 3   | Off                |
| Fail-safe relay 4     | FL5 4   | Off                |
| On delay relay 1      | On 1    | 0.0 sec            |
| Off delay relay 1     | OFF I   | 0.0 sec            |
| On delay relay 2      | On 2    | 0.0 sec            |
| Off delay relay 2     | OFF 2   | 0.0 sec            |
| On delay relay 3      | On 3    | 0.0 sec            |
| Off delay relay 3     | OFF 3   | 0.0 sec            |
| On delay relay 4      | 0n 4    | 0.0 sec            |
| Off delay relay 4     | OFF 4   | 0.0 sec            |
| Display 1 analog out  | d 15    | 0.00               |
| Output 1 value        | Out 1   | 4.000 mA           |
| Display 2 analog out  | d .5 2  | 100.00             |
| Output 2 value        | Out 2   | 20.000 mA          |
| Source analog output  | SourcE  | Process Variable   |
| Overrange output      | O-rAnG  | 21.000 mA          |
| Underrange<br>output  | u-rAnG  | 3.000 mA           |
| Maximum output        | nn AH   | 23.000 mA          |
| Minimum output        | חי ה    | 1.000 mA           |
| Slave ID<br>(Address) | SLAU 19 | 247                |
| Baud rate             | bRud    | 9600               |
| Transmit delay        | Fr QFA  | 10 ms              |
| Parity                | PRr ÆY  | Even               |
| Byte-to-byte timeout  | F-P7F   | 010 (0.1 sec)      |
| F1 function key       | FI      | Zero               |
| F2 function key       | F2      | Reset Tare         |
| F3 function key       | F3      | Tare               |
| F4 Function           | FY      | Acknowledge relays |
| Digital input 1       | d       | Menu               |
| Digital input 2       | 915     | Right arrow/F1     |
| Digital input 3       | 913     | Up arrow/F2        |
|                       |         |                    |

# PROVU PD6100 Strain Gauge, Load Cell, & mV Meter Instruction Manual

| Parameter        | Display | Default Setting |
|------------------|---------|-----------------|
| Digital input 4  | 414     | Enter/F3        |
| Digital output 1 | d0      | Alarm 1         |
| Digital output 2 | 40 5    | Alarm 2         |
| Digital output 3 | 40 3    | Alarm 3         |

| Parameter        | Display | Default Setting   |
|------------------|---------|-------------------|
| Digital output 4 | d0 Y    | Alarm 4           |
| Password 1       | PRSS 1  | 000000 (unlocked) |
| Password 2       | PRSS 2  | 000000 (unlocked) |
| Password 3       | PRSS 3  | 000000 (unlocked) |

# **Troubleshooting Tips (Including FAULT & ERROR Messages)**

| Symptom Symptom                                            | Check/Action                                                            |  |
|------------------------------------------------------------|-------------------------------------------------------------------------|--|
| No display at all                                          | Check power at power connector                                          |  |
| Not able to change setup or                                | Meter is password-protected, enter correct six-digit password to        |  |
| programming, Locd is displayed                             | unlock                                                                  |  |
| Meter displays error message                               | Check:                                                                  |  |
| during calibration (Error)                                 | 1. Signal connections                                                   |  |
|                                                            | 2. Input selected in Setup menu                                         |  |
|                                                            | Minimum input span requirements                                         |  |
| Meter displays                                             | Check:                                                                  |  |
| 1. 999999                                                  | Input selected in Setup menu                                            |  |
| 299999<br>3. FRult                                         | Signal at Signal connector                                              |  |
|                                                            | Input exceeds range selected                                            |  |
| Display is unstable                                        | Check:                                                                  |  |
|                                                            | Input signal stability and value                                        |  |
|                                                            | 2. Display scaling vs. input signal                                     |  |
|                                                            | 3. Filter and bypass values (increase)                                  |  |
| Display as a second in the selection                       | 4. Increase Rounding value                                              |  |
| Display response is too slow                               | Check filter and bypass values                                          |  |
| Display reading is not accurate                            | Check:                                                                  |  |
|                                                            | Signal input conditioner selected: Linear, square root, etc.            |  |
| Display does not recovered to                              | Scaling or calibration     Check:                                       |  |
| Display does not respond to input changes, reading a fixed | 1. Display assignment, it might be displaying max, min, or set point.   |  |
| number                                                     | T. Display assignifient, it might be displaying max, min, or set point. |  |
| Display alternates between                                 | Press Menu to exit max/min display readings.                            |  |
| 1. H and a number                                          | 1 1633 Werld to exit maximin display readings.                          |  |
| 2. Lo and a number                                         |                                                                         |  |
| Relay operation is reversed                                | Check:                                                                  |  |
| Troidy operation to reversed                               | Fail-safe in <i>Setup</i> menu                                          |  |
|                                                            | Wiring of relay contacts                                                |  |
| Relay and status LED do not                                | Check:                                                                  |  |
| respond to signal                                          | Relay action in <i>Setup</i> menu                                       |  |
|                                                            | 2. Set and reset points                                                 |  |
| Flashing relay status LEDs                                 | Relays in manual control mode or relay interlock switches opened.       |  |
| Meter not communicating with                               | Check:                                                                  |  |
| application programs                                       | Serial adapter and cable                                                |  |
|                                                            | 2. Serial settings                                                      |  |
|                                                            | Meter address and baud rate                                             |  |
| If the display locks up or the                             | Cycle the power to reboot the                                           |  |
| meter does not respond at all                              | microprocessor.                                                         |  |
| Other symptoms not described                               | Call Technical Support for                                              |  |
| above                                                      | assistance.                                                             |  |



# **EU Declaration of Conformity**

Issued in accordance with ISO/IEC 17050-1:2004.

We.

Precision Digital Corporation 233 South Street Hopkinton, MA 01748 USA

as the manufacturer, declare under our sole responsibility that the product(s),

## Model PD6100 ProVu Series Strain Gauge Meter

to which this declaration relates, is in conformity with the European Union Directives shown below:

2014/35/EU Low Voltage Directive

2014/30/EU EMC Directive 2011/65/EU RoHS Directive

This conformity is based on compliance with the application of harmonized or applicable technical standards and, when applicable or required, a European Union notified body certification.

#### Standards:

EN 55022:2003 EN 61000-6-2:2001 EN 61010-1:2001 EN 61326:2006

The standards EN 55022:2003, EN 61000-6-2:2001, EN 61010-1:2001, and EN 61326:2006 are no longer harmonized. The requirements of these standards have been checked against the harmonized standards EN 55022:2010, EN 61000-6-2:2005, EN 61010-1:2010, and EN 61326:2013 and there were no major technical changes affecting the latest technical knowledge for the products listed above.

Document No: DoC PD6100 {042016}

**Product Markings:** 

Signed for and on behalf of Precision Digital Corporation:

Name: Jeffrey Peters

Company: Precision Digital Corporation

Title: President
Date: 04/20/2016

# **How to Contact Precision Digital**

For Technical Support, please

Call: (800) 610-5239 or (508) 655-7300

Fax: (508) 655-8990

Email: support@predig.com

 For Sales Support or to place an order, please contact your local distributor or

Call: (800) 343-1001 or (508) 655-7300

Fax: (508) 655-8990

Email: sales@predig.com

 For the latest version of this manual, please visit www.predig.com

#### Order from:

# **C A Briggs Company**

622 Mary Street; Suite 101 Warminster, PA 18974 Phone: 267-673-8117 - Fax: 267-673-8118 Sales@cabriggs.com - www.cabriggs.com

# PRECISION DIGITAL CORPORATION

233 South Street • Hopkinton MA 01748 USA Tel (800) 343-1001 • Fax (508) 655-8990

