

Operating Instructions for Evaluation Electronics

Model: ZED-K and DF-...KLxxx

1. Contents

1.	Cont	ents	2	
2.	Note		3	
3.	Instru	ument Inspection	3	
4.	Regu	Ilation Use	3	
5.	Oper	ating Principle	4	
6.	Elect	rical Connection	5	
	6.1	ZED-K field housing and control panel installation	5	
	6.2	DFKLxxx, cable connection	5	
	6.3	Connection example	6	
7.	Oper	ation and Menu Structure	7	
	7.1	General	7	
	7.2	Function of the control keys	7	
	7.3	Character explanation for main menu	9	
	7.4	General settings	9	
	7.5	Flow, analogue output and relay S1	11	
	7.6	Relay S2	13	
	7.7	User alignment and service-settings	15	
	7.8	Error report	.17	
8.	Rela	y Functions	18	
	8.1	Switching characteristic limit value	18	
	8.2	Switching characteristic window	18	
9.	9. Technical Information19			
10.	10. Order Codes20			
11.	1. Dimensions20			
12.	12. Declaration of Conformance			

Manufactured and sold by:

Kobold Messring GmbH Nordring 22-24 D-65719 Hofheim Tel.: +49(0)6192-2990 Fax: +49(0)6192-23398 E-Mail: info.de@kobold.com Internet: www.kobold.com

2. Note

Please read these operating instructions before unpacking and putting the unit into operation. Follow the instructions precisely as described herein.

The devices are only to be used, maintained and serviced by persons familiar with these operating instructions and in accordance with local regulations applying to Health & Safety and prevention of accidents.

When used in machines, the measuring unit should be used only when the machines fulfil the EWG-machine guidelines.

3. Instrument Inspection

Instruments are inspected before shipping and sent out in perfect condition. Should damage to a device be visible, we recommend a thorough inspection of the delivery packaging. In case of damage, please inform your parcel service / forwarding agent immediately, since they are responsible for damages during transit.

Scope of delivery:

The standard delivery includes:

- Electronics for measuring and monitoring model: ZED-K and DF-...KLxxx
- Operating Instructions

4. Regulation Use

Any use of the Evaluation Electronics, model: ZED-K and DF-..KLxxx, which exceeds the manufacturer's specification may invalidate its warranty. Therefore, any resulting damage is not the responsibility of the manufacturer. The user assumes all risk for such usage.

5. Operating Principle

The evaluation unit changes the frequency signal of the pickup into a flow reading and into a scalable analogue signal.

The top display line of the double-spaced display shows the flow value with measuring unit and the bottom line a bargraph indicator proportional to the measuring value.

The two relays with floating output changeover contacts continuously monitor the flow values. Switching point, hysteresis, a window point, and switch on or off delay can be set separately for each relay. The switching points can also be set directly by using the control keys without having to change over into the menu. A red LED indicates the switching status.

The analogue output is optionally available as current output with 0(4)...20 mA or as voltage output with 0...10 V. The menu languages can be switched between German or English. If used where the flow readings change rapidly, the display can be pacified and the analogue reading averaged by switching on some software.

A MIN/MAX reading memory determines the extreme readings of the flow. The display of the readings and the resetting are achieved by using the keys without having to change into the menu. Resetting by using the keys can also be blocked.

The set parameters can be protected against unauthorized alteration by using a password function.

6. Electrical Connection

6.1 ZED-K field housing and control panel installation

*) Don't connect the clamp!

6.2 DF-...KLxxx, cable connection

Wire number	ZED-K electronics
1	+24 V _{DC}
2	GND
3	4-20 mA / 0-10 V
4	GND
5	S1 N/O
6	S1 COM
7	S1 N/C
8	S2 N/O
9	S2 COM
10	S2 N/C

*) Don't connect the wire!

6.3 Connection example

Namur-Sensor

7. Operation and Menu Structure

7.1 General

Only the menu items of which the lines are marked in the selection matrix (in the right position) in grey colour, are available in the respective instrument version.

Italic written values in the menu structure are blinking in the display, if they have been chosen for any input.

The parameter can only be changed, if the security code has been entered correctly! The message "locked" will appear if the input has not been activated.

7.2 Function of the control keys

Operating mode >Measure< :

 \rightarrow Display min. flow value (MIN value memory). - Press briefly: - Press for 3 sec: \rightarrow Enter switching point for Relay S1 | **s1SPoint** | (only if parameter **SPdirect** is set to "yes").

Operating mode >Parameterize<:

Note: If no button is pressed for 20 seconds during parameterising, the instrument automatically switches back into >measuring< mode.

7.3 Character explanation for main menu

7.4 General settings

GENERAL SETTINGS				
Menu Item	Parameter / Function	Explanation / Values / Other		
Language	Select menu language	German or English		
fUnitFS *	Measuring unit for flow measurement	mL/s, mL/m, L/s, L/m, L/h, m³/m, m³/h, GPM, GPH, UU/s, UU/m, UU/h		
fValueFS *	Maximum measuring range value for flow measurement	Range = 0,0099,91009999		
fMinVal *	Minimum measuring range value for flow measurement	Basis is fValueFS and fUnitFS If the level drops below this, the flow indicator goes to 0.		
fPls/rev*	Impulse per sensor wheel revolution	Number of impulses per revolution of the sensor wheel or the like Necessary for long-term period averaging if the readings per revolution vary The function is switched off when the input value is 1.		
fJumpVD*	Flow switch value for attenuation cut-off	Value in %, basis is fValueFS and fUnitFS. Attenuation does not function if the switch value is 0%.		
fOverfIV *	Flow overflow value (overflow)	Value in %, basis is fValueFS and fUnitFS. If exceeded, an M100 report is generated and faded in, alternating with the flow indicator. The report is saved and can be reset by briefly pressing the PGM key.		
fFactor	Select pulse ration	Selection of works calibration or user calibration. (only for devices Model DFZLxxx and ModelExxR)		
UserUnit.	Special volume unit	Customer-specific special unit UU. The value entered corresponds to the number of litres of the special unit, e.g. in the case of the unit <i>Barrel</i> the factor would for example be 115.6271.		
SPdirect	Activation of direct input switching point	yes: Direct input of switching points s1SPoint and s2SPoint is possible using the keys (default). no: The switching points can only be set in the menu .		

*) Only for ZED devices: Device-specific parameter, is only visible after activation in the **SecCode** menu item in the **SERVICE** menu group, and can be changed.

7.5 Flow, analogue output and relay S1

	FLOW				
Menu Item	Parameter / Function	Explanation / Values / Other			
fUnit	Unit of flow indicator	mL/s, mL/m, L/s, L/m, L/h, m³/m, m³/h, GPM, GPH, UU/s, UU/m, UU/h			
fDamping Attenuation of reading fluctuations in the flow indicator		The attenuation pacifies the flow indicator. The attenuation value is the approximate equivalent of the setting time of the display value to c. 90% of a measured value jump in seconds. (Parameter is blocked at DFZLxxx devices).			
fMMReDir	Reset the Min/Max flow value directly using the keys, without using the menu	yes: direct resetting of the Min/Max value memory by simultaneously pressing (3 sec) the (+) and (-) keys (default). no: memory reset only possible with fMMRST.			
fMMRST	Reset the Min/Max flow value memory of the flow indicator	yes: Resets Min / Max value memory for the flow no: No action.			

ANALOGUE OUTPUT				
Menu Item Parameter / Function Explanation / Values / Other				
aLIFE 0	Select Life Zero	Offset at power output: 0 mA or 4 mA at 0-10 V \triangleq 0 mA \rightarrow 0 V and 4 mA \rightarrow 2 V		
aLowFlow	owFlow Flow reading at 0/4 mA or 0/2 V Lower flow reading of gauged output range, value has the same unit as the flow indicator			
aHighFlo	Flow reading at 20 mA or 10 V	Upper flow reading of gauged output range, value has the same unit as the flow indicator		

RELAY S1				
Menu Item Parameter / Function Explanation / Values / Other				
s1Char.	Relay1 Switch characteristic	Limit: Monitoring a reading (s1SPoint). Window: Monitoring an adjustable measuring range (s1SPoints1Fpunkt).		
s1Logic	Relay1 Switch logic	normal: Relay 1 activated when the limit value is exceeded. invers: Relay 1 drops out when the limit value is exceeded.		
s1SPoint	Relay1 Switchpoint	Reading is in the same units as the flow indicator.		
s1Hyste	Relay1 Hysteresis	Reading is in the same units as the flow indicator.		
s1FPoint	Relay1 Windowpoint	Reading is in the same units as the flow indicator. (only if s1Char. is set to Window)		
s1SDelay	Relay1 Switch delay	Delays the switching of the relay when the limit value is exceeded. Range:_ 0,099,9 sec		
s1RDelay	Relay1 Reset delay	Delays the switching of the relay when the limit value is undershot. Range:_ 0,099,9 sec		

7.6 Relay S2

RELAY S2				
Menu Item Parameter / Function Explanation / Values / Other				
s2Char.	Relay2 Switch characteristic	Limit: Monitoring a reading (s2SPoint). Window: Monitoring an adjustable measuring range (s2SPoints12punkt).		
s2Logic	Relay2 Switch logic	normal: Relay 2 activated when the limit value is exceeded. invers: Relay 2 drops out when the limit value is exceeded.		
s2SPoint	Relay2 Switchpoint	Reading is in the same units as the flow indicator.		
s2Hyste	Relay2 Hysteresis	Reading is in the same units as the flow indicator.		
s2FPoint	Relay2 Window point	Reading is in the same units as the flow indicator. (only if s2Char. Is set to Window)		
s2SDelay	Relay2 Switch delay	Delays the switching of the relay when the limit value is exceeded. Range:_ 0,099,9 sec		
s2RDelay	Relay2 Reset delay	Delays the switching of the relay when the limit value is undershot. Range:_ 0,099,9 sec		

7.7 User alignment and service-settings

USER CALIBRATION			
Menu Item	Function / Description		
CAL Freq*	Calibrate by entering frequency and flow. In the menu item CAL Freq the bottom line always shows the current pulse value of the User calibration.		
	Calibration process:		
	a) FlowVal Enter nominal flow value of the sensor. > (e) press >		
	b) FlowUnit Enter unit for flow value. > (e) press >		
	c) Freq.Val. Enter nominal frequency > finish with (e).		
	The new pulse value of the User calibration is calculated from these three values and saved as user calibration for the flow measurement, e.g. 20.2757 pls./litre.		
CAL Vol.	Calibration process using impulse counting and volume input (cc procedure).		
	In the menu item CAL Vol. the bottom line always shows the current pulse value of the User calibration.		
	Calibration process:		
	 a) PulseCnt measures number of impulses (e) press > start counter (impulses are counted) > (e) press > stops counter. 		
	b) Vol.Val Enter measured volume value > (e) press.		
	c) Vol.Unit Enter unit for volume value > finish with (e).		
	The pulse value of the User calibration is calculated from these three values and is saved as the user calibration for the flow measurement, e.g. 3900,5 pls./L.		

*) CAL Freq – Only possible with ZED devices.

Note: With ZED devices it is necessary to enable the device-specific parameter input in the menu Item SecCode in the menu SERVICE in order to activate the CAL-USER function.

Note: If the new pulse ratio will be used for measurement, than the menu item fFaktor in the menu group General Settings must be setted to USER calibration.

	SERVICE				
Menu Item Function Explanation / Values / Other					
SecCode Input	Enter security code	Input of 4-digit security code and enablement of the parameter change. The following codes have been defined: 3461 – General menu release 6571 – Activates the device-specific parameters (only ZED and measuring unit as compact version)			
SecCode change	Change security code	Define or change security code for the first time or change. If no code (= 0000) has been set, then the parameter values set are unsecured!			
Save Prm	Save parameter record	Save current settings			
Load Prm	Load parameter record	Restore saved settings (reload).			
Restore Default	Reset to works default settings	Load initial setting with password 2541. ATTENTION: For ZED-devices the device-specific parameters will be overwritten. An adjustment provided by the customer will be lost in the process.			

7.8 Error report

Error code	Reason	Reset	
E102	User unit may not be ≤ 0	Correct parameter	
E142 Distance between upper and lower analogue value too small (based on the actual flow)		Correct parameter	
E 161 Value is greater than maximum measuring range value.		Correct parameter	
E162	Hysteresis too large	Correct parameter	
E 163	Window point is lower than switching point.	Correct parameter	
E242	Frequency must be between 0,2 and 2000 Hz	Correct parameter	
E245	Calculated pulse value out of valid range	Correct parameter	
M100	Overflow	Acknowledge with PGM button	
####	Value does not fit in the display	Choose suitable measuring unit	

8. Relay Functions

8.1 Switching characteristic limit value

8.2 Switching characteristic window

9. Technical Information

Display:	2 x 8-digit alphanumeric,
Display rate:	
Elow display:	15 2 or 4 digit (XX X X XX or XXXX)
Flow display.	5- 01 4-01911 (\wedge , \wedge , \wedge , \wedge 01 \wedge)
Flow units:	mL/s, mL/m, L/s, L/m, L/n, m/m, m/n, GPM
	(US), GPH (US), user unit per n/min/s
Measurement input:	$0.22000 \text{ Hz} (524 \text{ V}_{\text{DC}}), \text{ ITL, PNP, NPN,}$
	Namur
Parameter input:	menu controlled, German or English
Parameter protection:	4-digit password
Control elements:	3 keys
Customer comparison:	by entering frequency and measured value
	or in the Teach-In procedure (level calibration)
Control input:	reset-function
Relay outputs:	2 x changer (2 x N/O contact DFKL)
	max. 250 V _{AC/DC}
	5 A / 1000 VA
Voltage supply:	24 V _{DC} ± 20 %, approx. 80 mA or
CJ	90250 V _{AC} / max. 3 VA
Analogue output:	0(4)-20 mA
o	Load: max. 500 Ω (300 Ω at AC-supply)
	or 0-10 V (Load: > 100kΩ)
Apparent power:	15 V (at 24 V _{DC}) / max. 50 mA
	12 V (AC-supply) / max. 50 mA
Ambient temp.:	-20+70 °C
Dimensions:	96 x 96 x 109 mm (LxWxD) incl.
	screw clamp (control panel installation)
	$117 \times 117 \times 127 \text{ mm} (I \times W \times D) (field casing)$
Aperture size:	$92^{+0.8} \times 92^{+0.8}$ mm (control panel installation)
Casing material:	fibrealass reinforced Norvl
Cubing matchai.	(control nanel installation)
	nowder coated aluminium/PA 66
	(field casing)
Protection type:	(neid casing)
Fiolection type.	IF 40 00 00000 clamp IB 00 (control papel installation)
	ID 65 (field easing)
Mounting	IF 05 (Ileiu casilig)
wounting.	(control nonclinatellation)
	(control panel installation)
Operations	wall and pipe mounting (field casing)
Connection:	plug-in terminal strip (control panel installation)
weight:	approx. 360 g (control panel installation)
	approx. 1240 g (field casing)

10. Order Codes

(Order example: ZED-ZF10 KS 4R P)

Supply	Model	Electrical connection	Analogue output	Casing
90-250 V _{AC}	ZED-KF10			P = control panel installation 96x96 mm
24 V _{DC}	ZED-KF13	 KS = terminal strip (control panel installation) MS = cable connection M 18 (field casing) 	4R = 0(A)-20 mA 1 R = 0-10 V	 F = field casing 116 x116 mm S = field casing with wall mounting, infinitely variable pivotable R = field casing with 2"-pipe mounting

The order details of a ZED electronics in combination with a flow sensor can be found in the data sheet of the measuring device.

11. Dimensions

12. Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Evaluation Electronics Model: ZED-K and model: DF-...KLxxx

to which this declaration relates is in conformity with the standards noted below:

EN 61326-1 2006-10

Electrical equipment for control and instrumentation technology and laboratory use – EMC-requirements (industrial area)

DIN EN 61010-1 2002-08

Safety requirements for electrical measuring-, control- and laboratory instruments.

EN 60529, DIN VDE 0470-1 1992-11 Protection type housing (IP-Code)

Also the following EEC guidelines are fulfilled:

2004/108EC 2006/95 EC EMC Directive Low Voltage Directive

Hofheim, 22. April. 2008

H. Peters General Manager

ppa. Mullin

M. Wenzel Proxy Holder

Operating Instructions

for

Flow Monitor

Model: DF-...Hxx3K DF-...IHx3K DF-...KLxxx DF-...DLxxx DF-...ZLxxx

1. Contents

1.	Contents	2
2.	Note	3
3.	Instrument Inspection	3
4.	Regulation Use	4
5.	Operating Principle	5
6.	Mechanical Connection	5
7.	Electrical Connection	6
	7.1. DFHxx3K, DFIHx3K	6
	7.2. DFKLxxx, DFZLxxx, DFDLxxx	7
8.	Mechanical Commissioning	8
9.	Operation	8
10.	Maintenance	8
11.	Technical Information	9
12.	Ordering Codes	11
13.	Recommended Spare Parts	11
14.	Dimensions	12
	14.1. DFIHx3K, DFHxx3K	12
	14.2. DFKLxxx, DFZLxxx, DFDLxxx	12
15.	Declaration of Conformance	13

Manufactured and sold by:

Kobold Messring GmbH Nordring 22-24 D-65719 Hofheim Tel.: +49(0)6192-2990 Fax: +49(0)6192-23398 E-Mail: info.de@kobold.com Internet: www.kobold.com

2. Note

Please read these operating instructions before unpacking and putting the unit into operation. Follow the instructions precisely as described herein.

The devices are only to be used, maintained and serviced by persons familiar with these operating instructions and in accordance with local regulations applying to Health & Safety and prevention of accidents.

When used in machines, the measuring unit should be used only when the machines fulfil the EWG-machine guidelines.

PED 97/23/EG

In acc. with Article 3 Paragraph (3), "Sound Engineering Practice", of the PED 97/23/EC no CE mark.

	Pipe		
	Table 8 Table 9		
	Group 1	Group 2	
	dangerous fluids	no dangerous fluids	
All DF-models except	Art. 3, § 3	Art. 3, § 3	
DF-xxG(H)R32			
DF-xxG(H)R40			
DF-xxGR32/DF-xxGR40	not deliverable	Art. 3, § 3	
DF-xxHR32/DF-xxHR40	Kat. II	Art. 3, § 3	
DF-xxHF50	Kat II	Art. 3, § 3	

3. Instrument Inspection

Instruments are inspected before shipping and sent out in perfect condition. Should damage to a device be visible, we recommend a thorough inspection of the delivery packaging. In case of damage, please inform your parcel service / forwarding agent immediately, since they are responsible for damages during transit.

Scope of delivery:

The standard delivery includes:

- Sensor housing with mounted connection box or electronics
- Operating Instructions

4. Regulation Use

The units of model DF are used for measurement of liquid flow. Only low viscosity fluids which are chemically compatible with the materials used in the sensor housing are allowed to be measured. If using higher viscosity media, large measuring errors can occur. Long threads can lead to the seizure of the rotor. Likewise, ferritic particles can build up on the rotating vane and lead to faulty operation or destruction of the rotor. If in doubt, please contact the supplier.

Material Combinations

Standard version						High-pressure version	
Material combination	I	II	IIB ¹⁾	111	$IV^{1)}$	VI ¹⁾	VII ¹⁾
Order code	A	B	C	D	E	G	H
Connection types	Pipe thread	Pipe thread	Pipe thread	Pipe thread	Pipe thread flange	Pipe thread	Pipe thread flange
Case	Trogamide	Polysulfone	Poly- propylene	Brass nickel-plated	St.St. ⁴⁾	Brass nickel- plated	St.St. ⁴⁾
Cover	Trogamide	Polysulfone	Poly- propylene	Polysulfone	Polysulfone	Brass nickel- plated	St.St. ⁴⁾
Connection	Brass nickel- plated	St.St. ⁴⁾	Poly- propylene	Brass nickel-plated	St.St. ⁴⁾	Brass nickel- plated	St.St. ⁴⁾
Locking pins	Brass	Brass	Brass	Brass	-	-	-
O-rings	NBR	FPM	FPM	NBR	FPM	NBR	FPM
Vane	POM	PTFE	PTFE	POM	PTFE	POM	PTFE
Axle ³⁾	St.St. ⁴⁾	St.St. ⁴⁾	ceramics	St.St. ⁴⁾	St.St. ⁴⁾	St.St. ⁴⁾	St.St.4)
Bearing ³⁾	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE
Screen	PTFE ²⁾	PTFE ²⁾	PTFE ²⁾	PTFE ²⁾	PTFE ²⁾	PTFE ²⁾	PTFE ²⁾
Max. operating pressure	10 bar	10 bar	6 bar	16 bar	16 bar	100 bar	100 bar flange PN 40
Max. operating temperature	60 °C	80 °C	80 °C	80 °C	80 °C	80 °C	80 °C

1) Connection cannot be rotated 2) St. St. for model DF 0.5 3) Special version upon request 4) St.St.1.4571

5. Operating Principle

KOBOLD measuring sensors are available with pipe thread or flange connections; standard or high-pressure versions are optional. The standard version is delivered with a standard front cover from solid, transparent plastic, which allows the flow to be optically inspected. The rotary motion of the shining red vane can be clearly seen. Faults such as power failure or rotor blockage can thus be quickly detected in situ. In addition to their use as measuring and monitoring systems, the devices can also be used as flow indicators.

The standard front cover is replaced by a metal plate on the high-pressure version (up to 100 bar with the threaded version). The devices can be installed in any position. However, the flow must always be in the direction of the arrow, and the front panel of the device must be arranged in the vertical plane. The fluidic housing must be full with liquid. Additional inlet or outlet pipes are not required. The large radial clearance between vane and housing wall renders the measuring sensor insensitive to dirt. Depending on the version, the connection fittings can be rotated and are bearing mounted. Switching electronics or vane front may be rotated at will for ease of viewing (while in service).

The KOBOLD measuring sensors are also available without a compact electronic. The linear flow proportional pulse signal provided by the sensor can be controlled by customer own electronics. The customer is able to integrate the sensor directly into the electronics with the OEM-version (implement EMC-immunity) and can therefore save costs and material.

6. Mechanical Connection

Before installation

• Please make sure that the actual flow throughput matches the flow range of the instrument. The flow range may be read from the label.

Warning! If the measuring range is exceeded by more than 20%, bearing damage may occur.

- Please make sure that the allowable maximum operating pressure and operating temperature of the instruments are not exceeded.
- Make sure that the electrical supply to the instrument conforms to the equipment operating data (see label).
- Remove all transport packing and make sure that no packing material is left in the instrument.
- The instrument may be installed in any position. However, the flow must always take place in the direction of the arrow, while the front face of the instrument must always be in the vertical plane.

 It must be ensured that the instrument housing is continuously filled with the flow medium, especially for flows from top to bottom. No straight runs are necessary at inlet and outlet.

- Sealing of the connection threads should be carried out with PTFE tape or similar.
- During installation of the instrument, it must be checked that no stress is applied to the connections. We recommend that the inlet and outlet pipes are mechanically fixed approximately 50 mm from each instrument connection.

right!

- (PTFE) the instrument connections may not be rotated.
- Check that the connection thread to pipe is fully sealed.

Material Combination

Warning! The threaded connections of the instrument must be tightened with a suitable sized open ended spanner. Otherwise, the housing may be stressed which could lead to breakage of the equipment.

V

7. Electrical Connection

• When using

7.1 DF-...Hxx3K, DF-...IHx3K

Attention! Make sure that the voltage value of your instrument is between 5 and 24 V_{DC} .

- Make sure that the supply wires are deenergised.
- Connect the 3-pole connection clamp in accordance with the wiring diagram.

Cable Connection

Attention! Incorrect wiring will lead to damage of the unit's electronics.

7.2 DF-...KLxxx, DF-...ZLxxx, DF-...DLxxx

Attention! Make sure that the voltage value of your instrument is 24 V_{DC} .

- Make sure that the supply wires are de-energised.
- Connect the wires in accordance with the wiring diagram.

Wire number	ZEDKLxxx	ZEDZLxxx	ZEDDLxxx
1	+24 V _{DC}	+24 V _{DC}	+24 V _{DC}
2	GND	GND	GND
3	4-20 mA	4-20 mA	4-20 mA
4	GND	GND	GND
5	d.c. *)	d.c. *)	Ctrl 1 *)
6	d.c. *)	Reset TM *)	Ctrl 2 *)
7	relay S1 N/O	relay S1 N/O	relay S1 N/O
8	relay S1 COM	relay S1 COM	relay S1 COM
9	relay S2 N/O	relay S2 N/O	relay S2 N/O
10	relay S2 COM	relay S2 COM	relay S2 COM

*) d.c. = Don't connect wire! Reset TM = Reset part quantity Ctrl 1 -- GND => Start Ctrl 2 -- GND => Stop Ctrl 1 -- Ctrl 2 -- GND => Reset dosage

Attention! Incorrect wiring will lead to damage of the unit's electronics.

8. Mechanical Commissioning

To avoid pressure surges, the flow medium should be slowly introduced into the instrument.

Attention! Pressure surges from solenoid valves, ball valves or similar may result in damage to the instrument (water hammer). In the operating condition it must be checked that the instrument housing is continuously filled with the flow medium.

Large air bubbles in the instrument housing can lead to measuring errors or destruction of the bearings.

9. Operation

DF-...KLxxx See Operating Instructions ZED-K

DF-...ZLxxx See Operating Instructions ZED-Z

DF-...DLxxx See Operating Instructions ZED-D

10. Maintenance

The DF-..HN.. and DF-..HP.. instrument is maintenance-free for measured media without contamination,. Since the paddlewheel contains magnets, any ferritic particles present in the medium may lead to problems. In order to avoid such problems, we recommend the installation of a magnet filter (e.g. the magnet filter, model MF-R). Should cleaning of the instrument become necessary, the housing cover may easily be removed to provide access to the interior. Any work on the electronics may only be undertaken by the supplier; otherwise the warranty will become invalid.

11. Technical Information

Measuring accuracy: Medium temperature: Protection type: 2.5% of f. s. -20 to +80 °C (0...60 °C Material Comb.: I) IP 65

Frequency output (OEM) no CE (DF-...IHO3K, DF-...IHP3K)

Power supply: Supply current: Signal amplitude high: Signal amplitude low: Output loss: Electrical connection: Pulse output: $5-24 V_{DC}$ approx. 5 mA approx. power supply = 0.2 V max. 2.5 mW approx. 80 mm cable NPN, open collector, max. 15 mA, not symmetric

Frequency output (DF-...Hxx3K)

Power supply: Supply current: Signal amplitude high: Signal amplitude low: Output loss: Electrical connection: Pulse output: 5-24 V_{DC} approx. 5 mA approx. power supply = 0.2 V max. 2.5 mW PC-connection box with cable connection NPN or PNP, open collector, max. 15 mA, not symmetric high temperature version, DIN-plug connection

Special versions:

K-Electronics

Display:

Power supply: Current consumption: Electrical connection: Analogue output:

Switching output: Control elements: Functions: double-spaced display, illuminated flow value with selectable units and bargraph display 24 $V_{DC} \pm 20 \%$ approx. 100 mA 10 wire cable connection (0)4...20 mA selectable Load: 0...500 Ω or 0-10 V_{DC} , Load: >100 k Ω 2 relays, max. 30 V / 2 A via 3 keys MIN/MAX memory, flow monitor, language settings, password protection

Counter-Electronics

Display:

Quantity meter: Power supply: Current consumption: Electrical connection: Analogue output:

Relay outputs:

Control elements: Functions:

Dosage-Electronics

Display:

Quantity meter: Dosage: Power supply: Current consumption: Electrical connection: Analogue output:

Relay outputs:

Control elements: Function: 2 x 8-digit LCD module, illuminated, total, part and flow quantity; units of measurement selectable 8-digit 24 V_{DC} ±20% approx. 100 mA 10-pole cable connection 0(4)...20 mA selectable Load: 0...500 Ω or 0-10 V_{DC}, Load: >100 kΩ 2 relays, max. 30 V / 2 A via 4 keys Reset, MIN/MAX-memory, flow monitor, monitoring of part and total quantities, language

2 x 8-digit LCD module, illuminated dosage, total and flow quantity, units of measurement are selectable 8-digit 5-digit $24 V_{DC} \pm 20 \%$ approx. 100 mA 10-pole cable connection 0(4)...20 mA selectable Load: 0...500 Ω or 0...10 VDC, Load >100 kΩ 2 relays. max. 30 V / 2 A via 4 keys dosage (relay S2), start, stop, reset, fine dosage, correction quantity, flow monitor, total volume monitoring, language

12. Ordering Codes

Flow rate L/min	Model	Material combination (see transducer)	Connection sizes IG or flange DIN 2527, PN40	Electronics	Power supply
0,080,5 0,21,4 0,22,5 0,32,6 0,45,0 0,256,0 0,512,0 1,0012,5 1,0024,0 2,0048,0 2,560,0 5,00120 40,0160	DF-05 DF-14 DF-25 DF-26 DF-50 DF-06 DF-12 DF-13 DF-24 DF-48 DF-48 DF-60 DF-H2 DF-H6	A = Trogamide/ brass B = PSO/ VA C = PP D = Brass E = St. St. G = Brass, 100 bar H = St. St., 100 bar	R06 = G 1/8 R08 = G 1/4 R10 = G 3/8 R15 = G 1/2 R20 = G 3/4 R25 = G 1 R32 = G 1 1/4 R40 = G 1 1/2 F15 = DN 15 F25 = DN 25 F40 = DN 40 F50 = DN 50	 KLK3= Digital display, switching and analogue output, 24 V_{DC} 1.5 m cable connection KLL3= Digital display, switching and analogue output, 24 V_{DC} cable connection (Please specify length in clear text.) ZLK3= Counter electronic, digital display, 24 V_{DC}, 1.5 m cable connection ZLL3= Counter electronic, 24 V_{DC}, cable connection (Please specify length in clear text.) DLK3= Dosing electronics, 24 V_{DC}, 1.5 m cable connection DLL3= Dosing electronic, 24 V_{DC}, cable connection DLL3= Dosing electronic, 24 V_{DC}, cable connection 	4 = (0)4-20 mA 1 = 0-10 ∨

* Flange connection for material combination stainless steel E or H only.

13. Recommended Spare Parts

Rotating vane	1.1) PTFE	1.2) POM	1.3) PTFE with saphire bearing
Axle / bearing	2.1) St. St./PTFE	2.2) Ceramic/PTFE	2.3) Saphire/Saphire
			(only for 1.3)
Cover for sensor	3.1) Trogamide	3.2) Polysulfone	
housing			
Cover for electronic	4.1) NBR		
housing.			
O-rings	5.1) NBR	5.2) FPM	

Please specify serial number when ordering spare parts.

14. Dimensions

14.1 DF-...IHx3K, DF-...Hxx3K

14.2 DF-...KLxxx, DF-...ZLxxx, DF-...DLxxx

Screw

quantity

4

4

4

4

d4

[mm]

45

68

88

102

d2

[mm]

14

14

18

18

15. Declaration of Conformance

We, KOBOLD-Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Flow Transmitter Model: DF-..HN.. and DF-..HP..

to which this declaration relates in conformity with the standards noted below:

EN 61000-6-4 08-2002

Electromagnetic compatibility (EMC) - Emission standard for industrial environments

EN 61000-4-2 12-2001

Electromagnetic compatibility (EMC) - Testing and measurement techniques - Electrostatic discharge immunity test - Level 2

EN 61000-4-4 07-2005

Electromagnetic compatibility (EMC) - Testing and measurement techniques - Electrical fast transient/burst immunity test – Level 2

EN 61010 08-2002

Hofheim, 13. June 2008

Safety requirements for electrical equipment for measuring control and laboratory use

Also the following EWG guidelines are satisfied: 89/336 EWG 73/23 EWG

97/23/EC PED Category II, Table 8, pipe, liquids Group 1 dangerous fluids Module D, mark CE0098 notified body: Germanischer Lloyd Germany

H. Peters General Manager

ppa. Wellen

M. Wenzel Proxy Holder

We, KOBOLD-Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Flow Meter	Model: DFKLxxx
Flow Counter	Model: DFZLxxx
Dosing Unit	Model: DFDLxxx

to which this declaration relates in conformity with the standards noted below:

EN 61326: 1997 +A1: 1998 +A2: 2001 Electrical equipment for measurement, control and laboratory use

- Noise immunity: according EN 61326/A1 Amendment A table A.1 Criteria: according table 2, continuous not monitored operation
- Generic emission standard: according EN 61326/A1 Limit values: according table 4, equipment of class B

DIN EN 61010-11 1993

Safety requirements for electrical equipment for measuring control and laboratory use

Also the following EEC guidelines are satisfied:2004/108/ECEMC Directive2006/95/ECLow Voltage Directive

97/23/EC PED Category II, Table 8, pipe, liquids Group 1 dangerous fluids Module D, mark CE0098 notified body: Germanischer Lloyd Germany

Hofheim, 13. June 2008

H. Peters General Manager

ppa. Wellen

M. Wenzel Proxy Holder